時間:2023-08-07 09:23:47
緒論:在尋找寫作靈感嗎?愛發表網為您精選了8篇統計學大數據分析,愿這些內容能夠啟迪您的思維,激發您的創作熱情,歡迎您的閱讀與分享!
【關鍵詞】統計學;管理現狀;優化策略;模式創新
【中圖分類號】C81【文獻標志碼】A【文章編號】1673-1069(2020)06-0071-02
1引言
統計學作為企業經營管理的重要手段,在企業經營過程中統計工作是否落實到位,對于企業可持續發展目標的實現而言具有重要影響,尤其在當前多元化市場競爭環境下,企業規模化發展雖然推動了國民經濟的進一步發展,但與此同時企業市場競爭也愈演愈烈,實現持續性經營,確保統計學應用效益的最大化,是目前推動產業可持續發展的重要戰略基礎。
2大數據時代內容的基本概述
簡單來講,所謂的“大數據”是指在當前信息化產業時代背景下,無法在一定時間范圍內用常規軟件工具進行捕捉、管理和處理的數據集合,是互聯網公司在日常運營中生成、累積的用戶網絡行為數據,是需要新處理模式才能有效處理的海量、高增長率和多樣化信息資產。隨著近年來信息技術的不斷發展和廣泛應用,“大數據”時代是“互聯網+”技術應用下時代未來發展的趨勢。就目前來看,與傳統信息數據相比,大數據具有數據量大、數據多元以及數據價值高的顯著特點,伴隨城市化、工業化建設進程的不斷加快,如何有效地對大數據進行處理,成為現階段基層產業結構和相關主管部門的核心發展方向,也是促進企業進一步發展的重要基礎。
數據實質上是存儲于計算機內的各種信息集合,在當前全球化、市場化不斷發展的新產業時代背景下,商業模式的巨大轉變,在改變人們關注度的同時,也為企業的進一步發展奠定了良好基礎,最終為企業預期發展目標的實現創造了良好條件。對于大數據的處理,倘若采取傳統的處理技術,不僅難以達到預期的處理目標,更極易導致一系列其他問題的產生,最終對企業整體發展造成了極為不利的影響,為此在大數據發展的同時,技術領域也取得了顯著突破,目前常見的管理技術主要有——數據倉庫技術、數據安全技術、數據分析、數據挖掘和模型預測,其中,數據分析、數據挖掘與大數據關系最為密切。
3新形勢下統計學存在的主要問題
3.1企業對于統計管理工作的重視度不足
在經濟全球化和一體化建設進程不斷加快的新市場經濟常態下,企業規模和數量的不斷增加,在加劇企業市場競爭力的同時,如何有效地提升企業工作質量和工作效率是現階段企業的核心發展方向,但由于部分企業受傳統發展以及管理理念根深蒂固的影響,企業管理和發展重心始終集中于企業經濟效益,忽視了對統計管理的關注度,致使單位在統計管理工作方面的人力和物力投入不足,各項管理工作受到一定影響的同時,企業的整體發展也受到了一定影響。
3.2統計管理人員自身專業素養有待提高
統計管理人員作為統計管理工作的實踐者,其自身專業能力和綜合素養水平的高低,對于統計管理工作質量和工作效率具有重要影響,但隨著當下統計管理工作量的增加,部分企業為滿足人員配置需求,不斷地降低人員選拔標準,導致聘用人員無論是專業能力還是綜合素養都有待完善。作為一項專業、系統的管理工作,統計管理不僅要求管理人員擁有細心、踏實、耐心等基本素質,還要具備一定的計算機操作能力,但隨著企業規模和數量的持續增加,統計管理人員身兼數職、待遇不高等問題的存在,導致管理人員自身專業能力有所欠缺,業務操作等方面也存在一定不足,最終對統計管理造成了極為不利的影響。
3.3數據庫硬件設施、設備不完善
信息化產業時代背景下,“互聯網+”技術的廣泛應用,在便捷人們日常生活,提高企業生產效益的同時,將其應用到其他領域中,在一定程度上也為各單位的轉型升級注入了新的發展動力。統計管理是企業管理作業的重要內容,在很大程度上數據管理庫自身硬件設施、設備的完善度對于統計管理工作質量和效率具有直接影響,但對于某些偏遠地區亦或經濟發展相對緩慢的區域,統計管理設備、設施的落后性在影響現代化科技管理手段應用效益的同時,統計管理作業也始終未能得到突破性進展,企業發展也由此受到了一定影響。
4新形勢下統計管理工作的創新策略探析
4.1加強對統計管理重要性的宣傳力度,提高對統計管理工作的重視
統計管理作為企業管理的重要組成部分,其管理工作質量和工作效率對企業發展而言也具有一定影響,而為實現企業可持續發展的目標,確保統計管理工作落實到實處是極為必要的。通過上述分析可知,管理人員對于統計管理工作的不重視是影響統計管理工作效益的重要因素,為有效地改善當前管理現狀,一方面基層產業機構需加大對統計管理重要性的宣傳力度,在不斷提高人們對于“統計學應用效益”高度認同的同時,為統計管理工作的順利開展奠定良好基礎。而另一方面企業還需加強對統計管理工作人員的教育力度,在不斷增強統計管理人員工作責任感和使命感的基礎上,為預期管理目標的實現創造良好條件。
4.2積極和有關大數據公司或機構進行合作
要想在大數據時代背景下進一步優化和提高統計管理工作,就必須將大數據有關技術和統計管理的實際工作緊密結合起來,因此必須解放思想,打破行業限制,積極尋求和有關大數據公司或者機構進行合作開發,開發出真正適合統計管理工作的大數據技術和工具,大數據無法使用單臺計算機進行操作和處理,必須采用分布式架構技術等,其也必然和云計算的有關分布式處理、云存儲以及虛擬技術等密不可分,因此統計管理必須要積極尋求多方合作,積極將大數據的有關技術引入統計管理的實際工作中去。
4.3不斷優化和完善統計管理模式
在當前企業規模和數量持續增加的新產業時代背景下,數據的形成過程較為煩瑣,且數量也較為龐大,為從根本上有效提高管理的科學性、高效性和有效性,不斷地優化統計管理模式和管理手段也是極為必要的。通過大量調研數據分析可知,在進行統計管理過程中,信息技術的不斷發展和傳播渠道的日趨增多,在很大程度上為企業統計管理創造了良好條件,但由于部分企業在計算機信息技術應用過程中,未將現代化技術應用到電子統計管理中,導致管理信息化水平較低的同時,預期管理目標也難以實現,為有效地解決上述問題,將數據信息化納入到工作日程中,為單位的數據管理部門配置專門的信息化設備,是現階段提高統計管理信息化水平,促進企業進一步發展的重要戰略手段。
4.4將各項統計管理工作細節落實到位
在統計管理作業過程中,從根本上有效地提高企業的經濟效益、確保各項統計工作細節落實到位也是現階段基層產業機構和相關主管部門的重要工作內容,換言之,在當前多元化市場競爭環境下,要想從根本上提升統計管理工作質量,提高企業整體的經濟效益,以會計管理工作為中心,確保各項細節管理工作落實到位是十分必要的。要想確保管理工作效益的最大化發揮,提升企業經濟效益,企業需將會計的發展目標與企業的發展方向相結合,在確保兩者“統一性”的基礎上,以會計管理工作為中心對企業經營進行系統化管理,最終為企業可持續發展目標的實現奠定良好基礎。
4.5確保預算統計管理工作落實到位
在當前企業經濟收支管理過程中,預算統計管理工作流于形式是影響精細化管理效率的重要因素,而為從根本上有效地解決上述問題,確保全面預算統計管理工作落實到位,是現階段企業經濟運行精細化管理目標實現的重要基礎和根本前提。作為企業經濟運行精細化管理的重要環節,全面預算統計管理作業的開展不僅能確保企業達成預期的戰略目標,其在科學預測企業未來運營狀況、協調內部資源以及控制內部預算編制等方面都發揮了重要作用。因此,在進行預算統計管理過程中,企業統計管理部門工作人員需摒棄傳統管理理念,在做好日常收支管理的基礎上,還要確保內部全范圍、全過程及所有資產的預算統計管理落實到位,由此在保障全面預算作業有序開展的同時,提升企業在多元化市場中的競爭優勢。
關鍵詞:聽障大學生; 教學評價; 統計分析
【中圖分類號】G762
學生教學評價,即學生作為評價主體對教師的教學質量進行評價。其主要目的是為教師的教學提供有用的反饋,以促進教師提高教學質量,從而為提高學生的學習效果服務 [1、2]。聽障大學生,作為特殊的學生群體,日常教學應賦予更多的關心和愛心。對聽障大學生教學評價數據的研究,可以促進從事特殊教育的老師改善教學方法,調整教學態度,進一步提高特殊高等教育的課堂教學質量顯得格外重要。
數據數理統計分析是數學的一個分支,是指研究如何有效地收集和使用帶有隨機性影響的數據。通過數據的數理統計分析,可以進行數據的整理和問題的推斷[3]。現代數理統計分析的一個顯著特點就是運用計算機實現有關的統計計算與分析,目前也有許多應用計算機軟件對于教學質量進行分析討論的報道。本文利用SPSS軟件(Statistical Product and Service Solutions)對聽障大學生教學評價數據進行統計分析,以更好的發揮評價的診斷、激勵和導向的作用。
一、數據分析來源
本文數據來源于某大學某學期聽障大學生教學評價數據,共涉及25門課程。教學評價分為十項指標,分別為“tm1”:儀表端莊,教態自然,精神飽滿;“tm2”:上課準時、足時,認真負責,嚴格要求學生;“tm3”:關懷和尊重學生,有固定的輔導和答疑時間師生關系融洽;“tm4”:教學目標、要求、考核形式明確,推薦有助我們學習的參考文獻;“tm5”:授課內容充實,信息量大,重難點突出,進度安排適當;“tm6”:作業有利于我們掌握知識和自主學習,批改和分析認真;“tm7”:思路清晰,闡述準確,語言規范生動;“tm8”:因材施教,注重學生創新意識和能力培養;“tm9”:教學方法靈活,教學手段恰當,注重互動,課堂氣氛活躍;“tm10”:掌握了本課程的核心內容,激發了學生學習興趣,提高了分析問題、解決問題的能力。
二、分析方法
本文主要使用了SPSS軟件中的描述性統計分析(Descriptive Statistics,得到原始數據轉化成標準化的取值,可以直觀了解數據的情況,同時便于進一步分析);K-S單樣本檢驗分析(Kolomogorov- Simirnov One-sample Test,主要考察數據是否符合正態分布);主成分分析(Principal Component Analysis,將多個變量通過線性變換以選出較少個數重要變量);K中心聚類分析(K-means cluster analysis,將數據進行分類,辨別樣本之間的親疏關系);單因素方差分析(one-way ANOVA,調查按某個研究因素的不同水平分組后該因素的效應)。
三、結果與分析
(一)學生教學評價整體情況及正態分布分析
分析教學評價整體情況可以了解聽障大學生課堂教學質量的總體情況。從表1可以看出,該學期聽障大學生教學評價總分范圍在81.48-99.82之間,平均成績為89.69±3.62。利用SPSS軟件進行正態分布分析,得到表2及圖1。從表2得到單樣本K-S檢驗Z統計值為0.500,漸近顯著性水平為0.964,遠大于0.05,因此教學評價結果符合正態分布。
(二)學生教學評價指標主成份分析
利用SPSS進行學生教學評價指標主成份分析后,得到表3。主成份分析法只提取到1個成分,且變量系數均接近1,因此可以認定本體系10項指標相互獨立,影響較小。
(三)不同課程學生教學評價聚類分析
通過SPSS軟件K中心聚類分析方法,將25門課程進行聚類分析,得到表4、表5。從表4可以看出,通過聚類分析,通過學生教學評價成績將25門課程分為了2類,1類優秀成績為15門課程,2類良好成績為10門課程。表5則表示每門課程所屬聚類。
(四)學生教學評價指標的聚類分析
通過SPSS軟件K中心聚類分析方法,將學生教學評價十項指表每門課程的得分進行聚類分析,得到表6、表7。通過聚類分析,將評價指標分為了2類,指標1、2、3被歸為類別1,可以看出主要是指教師的教學態度;指標4-10被歸為類別2,主要考查教師的教學業務水平。
(五)不同學科類別科目學生教學評價差異性分析
根據課程不同性質,將參與評價的25門課程分為了學生思政(兩課)類、文科(外語、語言等)類、理科(數學、物理等)類。
利用SPSS進行單因素方差分析。文科類課程與理科類課程學生教學評價成績有顯著性差異,且文科類課程得分要高于理科類課程。原因可能由于理科類課程需要大量邏輯思維能力,聽障大學生可能在這方面有所欠缺,因此課堂教學效果不如文科類課程。此外,學生思政類課程與文科、理科類課程均沒有顯著性差異,其得分介于兩者之間。
(六) 不同職稱教師授課學生教學評價差異性分析
根據授課教師職稱不同,將參與評價的25門課程分為了教授授課、副教授授課及講師授課三類。
利用SPSS進行單因素方差分析。教授授課類學生教學評價得分與副教授、講師授課類直接均存在著顯著性差異,且總分均值要高于其他兩類。可見,教授因為在知識、授課經驗上的累積,其教學效果要好于副教授及講師。副教授及講師教學評價得分則無顯著性差異。
四、結語
本文通過計算機軟件等輔助手段,將原本多而無規律的教學評價數據進行了分析處理,獲得了許多有價值的信息,這些都有利于教育管理進行優化管理,更好的做出決策,為強化教學管理、提高教學質量打下基礎。本文只是在聽障大學生教學評價過程中,利用計算機輔助手段進行分析的初步探索。教學評價是一項非常復雜的質量監控的過程,如何進一步利用計算機軟件等為教學質量提供支持,有待我們繼續研究。
參考文獻
[1] 魯進勇,夏建剛. 本科教學質量評價的文獻綜述[J].學問?科教探索,2008,18:24-25.
關鍵詞 泛在學習 學習生態 有效學習 英語學習 大數據
近年來,移動互聯網、大數據等信息技術發展日新月異,已經成為推動教育變革的重要力量。移動通信終端的普及為學生營造了泛在英語學習環境,大數據技術開啟了個性化智能教育時代,翻轉課堂、MOOC、微課等新型教學模式層出不窮,雖然它們不能取代傳統教學模式,但英語教師必須與時俱進,重視信息技術對傳統英語課堂的改造和提升,以全新的視角思考英語教學的變革方向。
一、研究理論概述
1.泛在學習理論
泛在學習是指任何人在任何時間和任何地點都可以通過泛在網絡實現任何知識內容的學習。泛在網絡和泛在計算技術為人類實現隨時隨地的泛在學習提供了技術保障,信息技術和教育技術的融合發展正深刻改變著知識的傳播方式和學生的學習方式,不斷重構著教育和學習的生態環境。一方面,移動通信終端的多元化發展解除了傳統英語學習對地點的約束,翻轉課堂、MOOC等新型教學模式使學生可以自由地選擇學習時間、進度、內容和學習方式。另一方面,傳統教學設備正在向數字教學設備變遷,教育領域信息基礎設施建設有效地推動跨區域教學資源整合,海量的多媒體教學內容必須和學生的碎片化時間有效結合,教師需要針對不同學情的學生進行精準施策和差異化施策。
2.學習生態理論
學習生態是由學習群體及其所處的環境共同構成的生態系統。系統由信息技術、多媒體教學設施等支撐,通過以合作、交流、共享、互動為特征的教育實踐,實現知識信息傳遞和有效學習,從而促進系統的不斷優化。學生與學習環境、學生和學習群體之間密切聯系、相互作用,通過知識的吸納、內化、創新、外化、反饋等過程實現有效學習[1]。在泛在學習的背景下,學習生態研究的是教育信息、學習主體、教師、教育信息環境之間相互作用的生態系統,需要從教育信息化建設和應用的視角研究各個生態系統成員之間的相互作用規律,維護生態系統的平衡發展。
3.有效學習理論
有效學習是指學生在教師的指導下,針對學習內容采取適合自己的學習策略,積極主動地參與到學習過程中,高效率地完成知識建構,從而實現學習目標并優化自身知識結構的學習行為。有效學習是對學習內容、學習方法、學習過程、學習結果的價值追求[2],學生可以實現對知識的深層次理解和靈活應用。學習內容的優化在大數據背景下表現為對海量學習內容的篩選、清洗與轉化[3],使之滿足學生的學習需要。學習方法調整是建立在對學生學習情況進行多元評價的基礎上,根據學生個人學習偏好、認知習慣、學習方式、情感態度因素、學習內容的變化而動態進行的。學習過程的積極參與是指學生能夠積極主動地學習,充分和師生進行合作、交流,善于提出問題、分析問題和解決問題。學習評價是學生改變學習計劃、優化學習方法的重要手段,對學生學習可以起到引導、激勵、啟示和教育作用。
二、當前英語泛在學習模式存在的主要問題
1.傳統課堂教學和線上教學環節缺乏有效銜接
首先,魍晨翁媒萄Ш拖呱轄萄г誚萄Ы謐唷⒅識范圍上沒有有效銜接。例如,學生不知道如何在線上學習課堂上沒有掌握的知識點,或者在線上環節重復學習課堂中已經掌握的知識點。其次,缺乏對課堂英語學習和個性化英語自主學習的融合創新設計。在傳統課堂教學中,整齊劃一的教學標準無法滿足英語學習分層分級的差異化教學要求。不同學情的學生對學習時間、空間、內容、方式的需求不盡相同,教師在教學中沒能和學生線上學習的大數據分析結果進行有效的融合對接,僅根據自身的教學經驗和主觀判斷作為實施因材施教的依據,因此其決策缺乏精準性和穩定性。
2.泛在學習缺乏生態性系統設計,學生英語泛在學習的用戶黏性不高
當前泛在學習過程特別是在線學習過程缺乏師生互動性、社交互動性、線上線下互動性。泛在學習僅停留在將文字、圖像、視頻等教學資料數字化、網絡化、集成化和泛在化的階段,這在某種程度上增加了學生英語學習的選擇性和便利性,但缺乏針對不同學生的學習黏性設計,因此泛在學習效果并不理想。
3.英語泛在學習體系缺乏具有“參與感”和“現場感”的語言學習環境
建構主義理論認為,知識的獲得是在學習環境的特定情境作用下,借助教師的幫助與學習伙伴的協作,通過意義的建構過程實現的。因此在英語泛在學習過程中,必須增強學生在特定情境下的溝通和交際活動的參與性[4]。例如,如果在英語課程設計和在線學習設計環節,鼓勵學生廣泛參與學習內容、學習方法、學習偏好的設計,就會讓學生感受到教師對學生的愛與尊重,從而增強學生學習的主動性和積極性,使不同學情的學生都能在學習過程中體驗自我實現感,實現自主學習。另外,教師缺乏對學生多元需求的感知和把握,缺乏語言鍛煉的“現場感”設計,使學生無法在接近真實生活情境的語言環境中得到語言交際鍛煉。
三、基于大數據分析的英語泛在學習生態系統
移動通信和大數據分析技術的發展為有效解決當前英語泛在學習模式存在的問題提供新的方式和途徑。基于大數據分析的英語泛在學習生態系統以學生的英語學習需求、特征、習慣、喜好等大數據挖掘為切入點,聯合學校、互聯網教育機構、教材編寫人員、教師、信息化支撐機構、教育管理機構、在校學生和在職學員等生態系統成員共同把泛在學習落實到教學環境、模式設計、資源開發、評價機制和管理機制等工作中,不僅僅是教育內容資源和信息的共享空間,而且是實施素質教育和個性化學習的公共服務平臺。因此,本文構建了基于大數據分析的英語泛在學習生態系統,主要包括大數據采集、大數據存儲、大數據分析、大數據應用四個子系統,并構建了系統體系結構模型(圖1)。
1.大數據采集子系統
首先,大數據采集子系統要實現數據、文字、圖像、音頻、視頻、多媒體等結構化數據和非結構化數據采集,實現跨區域、跨機構、跨教學環節的數據互聯互通和數據采集功能,解決教育數據資源配置效率不高的問題。其次,實現英語教學設計、教學實施、課程內容建設、網絡學習內容資源建設、語料庫建設、學生學習認知過程監控、學生學習情感態度監控和學習評價等全教學鏈條的數據采集功能,為生態系統成員之間的共生發展提供良好的數據資源基礎。
英語教學設計數據主要采集教師按照教學大綱和教學目標要求對不同學生制定的學習內容、學習進度、學習路徑等數據,厘清學生在課堂上和網絡上分別學什么、在哪學、怎么學的問題。教學過程數據主要采集教師在教學中幫助學生解決英語學習問題的經驗、做法和策略,包括情感態度、認知因素的調控、語言情境的構建、師生的有效互動等。課程內容數據主要是采集教師、學校、互聯網教育機構課程教學內容數據,包括教材內容、課件、題庫、案例等授課內容資料,以及以上資料經過碎片化處理的數據資料。
網絡資源數據庫主要采集互聯網、校園網上英語學習方面的相關資料。英語語料庫數據主要采集中國學習者英語語料庫、美國當代英語語料庫等語料庫內容,以及英語教材、英美小說、散文、演說詞、電影劇本、新聞稿等英文自然語料。學習行為數據庫主要采集學生課堂學習行為和線上學習行為數據。課堂學習行為包括是否預習、復習等,線上學習行為數據采集學習日志、學習習慣、學習時長和學習路徑等。學習評價數據主要采集教師或者在線學習系統對學生的學習能力、學習方法、學習策略運用、學習過程和學習結果的評價數據。學習情感態度數據主要是通過問卷、訪談等方式采集影響學生英語語言習得的動機、態度、焦慮、自信等指標。
2.大數據存儲子系統
大數據存儲子系統主要實現對大數據采集子系統采集的海量結構化、非結構化數據進行數據清理、歸檔、壓縮,實現一體化數據存儲。可以實現跨區域、跨系統的英語泛在學習數據的融合,解決不同教學機構、數據結構、操作系統帶來的信息孤島問題。英語學習數據倉庫是指集成了大數據分析子系統和應用子系統決策分析所需的泛在學習數據,這些數據是按照一定的英語學習主題進行組織,是在對原有分散的各類英語泛在學習數據庫數據進行加工、匯總和整理后得到的,有效地消除了各類源數據中的不一致性,所以英語學習數據倉庫的信息均是關于學生英語泛在學習全局情況的一致性信息。數據倉庫的這些全局性信息同r通過網絡云平臺實現英語泛在學習數據的云端存儲,可以直接由大數據應用子系統調用。
3.大數據分析子系統
認知因素和情感因素是影響英語習得效果的兩個重要方面。大數據分析子系統首先結合學生應該達到的學習目標對學生個體的英語學習認知行為和學習的情感態度進行數據挖掘,分析學生的動機、態度、焦慮、自信、興趣等情感因素,以及學習毅力、能力、習慣、方法、英語水平和常犯錯誤等認知行為因素,對數據挖掘結果進行聚類運算和分類處理,根據學生的學習認知行為和學習態度情況將學生細分,以識別不同學生之間相似的泛在學習需求,以及某個學生個體在不同學習階段泛在學習需求的差異性。同時,大數據分析子系統會對學生的學習過程和學習結果進行動態綜合評價,并根據學習評價結果判斷學習方案的優劣,有針對性地進行線上和線下學習方案的調整。
4.大數據應用子系統
大數據應用子系統包括學習信息推送系統、學習信息定制系統、在線互動學習系統、語言情境仿真系統、知識關聯推薦系統、知識精準搜索系統、知識樹形管理系統和娛樂在線學習系統等應用。學生可以通過學習終端連接到相關應用系統進行英語語言知識的有效學習。學習信息推薦系統自動推薦給學生的學習信息是學生應掌握而目前未掌握的英語知識。學習信息定制系統可以滿足學生根據自身學習需求而定制某類主題的學習信息。學生一方面通過在線互動學習系統可以和輔導教師進行交流互動,解決學習中遇到的問題,另一方面可以通過社交軟件實現和其他學習者的溝通和交流,共享英語學習經驗。
語言情境仿真系統可以實現某類主題的英語學習情境的在線仿真,讓學生在接近真實環境的英語語言情境中進行英語交際鍛煉。知識關聯推薦系統是根據學生所學知識點,自動關聯推薦對應的拓展知識點。知識精準搜索系統可以幫助學生快速實現英語知識的精準有效搜索,從而進行有針對性的學習。知識樹形管理系統可以實現學生已掌握知識和未掌握知識的樹形目錄管理,實現線上學習和課堂學習知識管理的無縫鏈接。
基于大數據分析的英語泛在學習生態系統有利于充分發揮信息技術對傳統英語教育的改造提升作用,可以有效促進信息技術與教學過程、內容、方法和教學評價體系的深度融合。在生態系統的價值取向上注重以促進學生全面健康發展為中心,注重需求導向的個性化學生培養模式。在學生習得效果評價體系上注重加強學習過程評估,強調過程評估和結果評估相結合。系統注重充分挖掘學生的個體差異,充分挖掘學生的學習潛能,圍繞學生英語學習習慣的形成和學習情感態度的培養,以現代信息技術為輔助手段,將英語語言知識進行碎片化、情境化、可視化處理,通過采取教育信息推送、關聯推薦和定制化相結合的方式實現知識的在線傳播,給學生提供個性化、定制化的英語學習信息服務,帶給學生全新的英語泛在學習體驗。
參考文獻
[1] 張豪鋒,卜彩麗.略論學習生態系統[J].中國遠程教育,2007(4).
[2] 曹貞.以有效學習為目標的大學課堂教學[J].教育與職業,2007(26).
[3] 陳明選,陳舒.論信息化環境下大學生的有效學習[J].高等教育研究,2013(9).
關鍵詞:大學生職業素質 SPSS統計軟件 模型構建
一、SPSS統計軟件特性分析
(一)SPSS統計軟件應用范圍
SPSS(Statistical Product and Service Solutions),是一種“統計產品與服務解決方案”軟件。開始時它的全稱為“社會科學統計軟件包”,但最后被命名為“統計產品與服務解決方案”。它最初用于統計學分析運算、數據挖掘、預測分析和決策支持任務,有Windows和Mac OS X等版本。后來隨著SPSS公司對這款軟件的更新與改進,它的應用范圍也逐漸擴大起來,它在自然科學、技術科學和社會科學等方面都有涉及,并且都收到使用者的好評。世界上許多著名的雜志報刊都對SPSS統計軟件的各方面功能做出了很高的評價。
(二)運用SPSS統計軟件的實例分析
某高校要對大學生黨員素質進行評價,以便于對發展和培養當代大學生的工作實踐。他們首先選取了“道德品行”“政治素養”“學習能力”“工作能力”“心理素養”這五個方面對大學生黨員素質進行評價,然后要求被調查者根據自己對黨員的要求來判斷學生黨員是否能做到其中一點。其中1表示“非常不同意”、2表示“不同意”、3表示“不能確定”、4表示“同意”、5表示“非常同意”。從發出的300份卷中篩選出有效的188份,然后用SPPS統計軟件對分卷信度用克隆巴赫系數測量,該系數表示的是問卷調查結果總變異中由不同被調查者導致的比例占多少,整個問卷和各個子問卷的克隆巴赫系數如下表所示:
為了驗證所獲得數據的有效性,該試驗還進行了Bartlett’s Test和KMO指標驗證。Bartlett’s Test檢驗的sig為0.000說明參與分析的數據來自正態分布的總整體,而KMO的取值在0到1之間,所得到的值越接近1,表明這些變量對因子分析的效果越好,這些因素很好的解釋了大學生優秀黨員應當從什么地方開始培養,而SPSS統計軟件則是驗證了這些因素的有效性和可信度,為大學生黨員的培養工作提供科學依據。
二、大學生職業素質評價模型構建
(一)大學生素質評價模型研究背景
隨著時代的前進和科學技術的發展,現代年輕人的思維也追上了時代的最前端。步入大學殿堂的“90后”一代年輕人,他們追求自我和個性的特點越來越顯著,教育工作者對大學生職業素質的培養與分析也遇到了挑戰。如何根據大學生的特點來構建素質評價模型是新一代教育工作者需要考慮的問題。
(二)SPSS統計軟件對大學生職業素質評價模型構建的作用
對大學生職業素質評價要從學習能力、工作能力、政治思想、心理素質四個因素考慮,這四個因素涵蓋了大學生的外在處事能力和內部思想,是對一個人的綜合職業素質比較全面的評價。大學生的職業素質評價模型由這四個因素構成。運用SPSS統計軟件對這幾個因素進行分析,可以看出這些因素對職業素質評價所占比重的大小,然后根據各個因素所占的比重構建大學生職業素質評價模型,得出科學的評價方法和評價重點。
(三)SPSS軟件對大學生職業素質評價情況分析
運用SPSS統計軟件對大學生職業素質進行數據統計分析,可以了解到我國當代大學生需要培養的職業素質,也可以看出在校大學生對自身優秀職業素質的期盼和要求。大學生的職業素質涵蓋了學習、工作、政治、心理等四大方面,以大學的具體生活為基礎,由校園小范圍擴大到社會這個大范圍,具有很強的現實指導意義。運用SPSS統計軟件,可以得出大學生職業素質評價的重點,讓大學生充分了解到自己達標和不達標的地方,加以改正。
三、結論
對大學生的職業素質進行評價是大學生發展階段中的必要條件。大學教育的目的在于讓大學生成長和發展,讓他們掌握更多的知識技能,認清自己與社會外界的關系,有助于自己以后的工作和生活。而在SPSS統計軟件的分析下,可以看到大學生的職業道德素質由多種原因共同決定,因此我們可以知道,只有多方面的對大學生進行教育,才能使大學生形成良好的職業道德素質,做一個對社會、對國家有用的人。
參考文獻:
關鍵詞:大數據 統計專業 核心
中圖分類號:G632 文獻標識碼:A 文章編號:1674-2117(2014)10-0008-02
1 大數據的統計涵義
通常來說,凡是數據量超過一定大小,導致常規軟件無法在一個可接受的時間范圍內完成對其進行抓取、管理和處理工作的數據即可稱為大數據。業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特征:數據體量巨大、數據類型繁多、價值密度低、處理速度快。
大數據潮流讓我們獲得了海量的數據,數據已經成為相關行業創造價值的重要資源。因此,許多IT企業和互聯網企業都已將業務范圍延伸至大數據產業,探索大數據驅動的業務模式。2012年,美國政府投資2億美元啟動的“大數據研究和發展計劃”,更是將大數據的研究上升到國家戰略層面。然而,大數據的真正意義不在于數據量的巨大,而在于對數據信息進行專業化的處理,核心是對數據進行分析。面對大數據,越來越多的領域都開始運用數學特別是統計學的工具,挖掘大數據中真正蘊藏的價值。正如西內啟在《看穿一切數字的統計學》書中所指出的,“從數據中得出有意義的結果,關鍵在于控制和減少誤差,得出因果關系,單純收集數據并加以全部量化分析在很多情況下會得出謬誤結果,”而科學的統計學方法是得出因果關系的最佳方法。
從統計學角度看,一方面,大數據具有類型繁多、結構復雜、體量巨大等特點,海量數據以分布式方式進行存儲,特別是圖片、音頻、視頻等非結構化數據的廣泛存在,傳統的統計方法和統計分析工具已無法滿足大數據分析的需要,亟需統計方法的革新。另一方面,數據分析結果需要用生動、直觀、容易被接受的方式展示給讀者,可視化分析能夠直觀地呈現大數據的特點,闡釋數據與數據之間的聯系。因此,統計學要挺立大數據潮頭,創新統計分析工具、可視化分析方法,以大數據的挖掘和應用為核心,將傳統文本、圖像的統計、分析向數據分析轉變,以適應大數據時代的發展及其對統計學帶來的挑戰。
2 大數據時代統計學教育面臨的挑戰與應對
據互聯網數據中心(Internet Data Center)預測,中國大數據技術與服務市場將會從2011年的7760萬美元快速增長到2016年的6.16億美元,而據業界專家估算,中國大數據市場的人才需求量至少為100萬人,其中統計人才、技術更是捉襟見肘。傳統數據收集和分析技術的知識結構已不能滿足大數據時代對“數據科學家”的要求,多家企業在面對大數據發展時遭遇人才瓶頸。大數據相關人才供給不足將會成為影響大數據市場發展的一個重要因素。
當前,全世界范圍內已有數百個高校開設了大數據分析專業。卡內基梅隆大學和新澤西州立大學在培養目標和課程設置上項目設置偏重于計算機方向。課程設置偏重統計學與運籌學(包括決策科學)的典型學校有田納西大學和約克大學。2013年,北京航空航天大學與慧科教育合作開辦了國內首個“大數據技術與應用”軟件工程碩士項目研究生班,這是目前國內唯一一個培養大數據行業專業型人才的項目,但其培養目標、知識體系是面向計算機領域,而立足統計學基礎的大數據分析人才培養項目,在國內可謂是鳳毛麟角。
知者隨事而制。高等院校統計學專業要通過有效利用和整合人才培養資源,承擔大學人才培養的責任,駕馭大數據的浪潮,占領大數據發展人才培養的制高點,體現高等院校向社會、企業提供智力支撐,輸送企業亟需的復合型、實用性大數據分析人才的載體作用,確保產業科學、持續、高速的發展。一是教育資源的整合,走在前列的首都經濟貿易大學、北京大學、中國人民大學、中國科學院大學、中央財經大學五所應用統計專業碩士培養單位在北京成立了“中國大數據教育協同創新體”,在高校之間實現學科融合、優勢互補、強強聯合,通過共享優質資源平臺、共同建立課程體系、共同建設案例資源庫、聯合搭建實踐實訓平臺等多種形式,創新人才培養體制機制。二是高等院校教育資源與業界資源的整合,通過與國有超大型企業、互聯網翹楚的協同培養,立足應用統計專業碩士教育,建立人才培養基地,進行協同創新,探索構建應用統計(大數據分析)專業碩士人才協同培養模式。以緩解當前大數據人才供需矛盾為目的,建立“校校協同、校企協同、院系協同”的大數據分析方向人才協同培養模式,最終實現協同培養“數據科學家”的目標。[5]
3 面向大數據分析方向的應用統計專業碩士培養模式的構建
本研究認為,可以將大數據分析及相關的案例教學模式融入應用統計專業碩士學位研究生的培養過程,進而打破統計學傳統的以闡述統計理論、公式推導、數學計算為主的教學模式。以情境浸潤為基礎,為學生呈現統計學在大數據領域應用為核心的教學模式,可以培養學生對大數據的挖掘、整合、分析價值的能力,以期更好、更快地適應企業對數據分析師、數據科學家的需求。
3.1 科學構建課程體系,突出大數據分析特點
大數據具有強烈的行業特點,在充分借鑒國外大學成功經驗的基礎上,大數據分析專業碩士的課程設置,強化數據分析能力和數據挖掘能力,注重上述技術在金融等領域的應用。必修課在講授統計基礎理論(描述、多元、時序、空間、可視化等)課程的基礎上,為增強學生的大規模分布式計算技能,引入主流的大數據計算平臺,如Hadoop分布式平臺、MapReduce并行編程算法。與此同時,為提高學生動手能力,構建數據模型思維,開設《大數據分析案例》等多門課程。選修課方面,考慮到學生二次開發的需要,設置大數據開發基礎課程,如C++、Java等。為突出應用統計專業碩士側重應用的特點,開設面向數據的編程語言,如R、SAS、Python等課程。這些課程模塊的設置并非體現某一學科知識的縱深發展,而是將相關學科的知識融合,有利于突出大數據分析的特點。
3.2 創新教學培養模式,注重培用結合
以“編組”方式開展教學活動。授課教師和學生均采用團隊編組模式,多名教師協同工作,共同完成一門課程的授課任務。打破原有學科思維、教材的束縛。采用導師指導與集體培養相結合的方式。教師不可照搬舊有的教學大綱、課程內容,要學習和熟悉大數據相關知識體系與技術新進展,充分結合大數據分析需求和實際案例,使課程內容緊貼實際需求,注重培養學生對模型的理解,對數據的想象力,真正實現學以致用、培用結合。
采取“訂制化”培養模式,突出培養與應用相結合的特點,力爭做到人、崗的高度匹配。“訂制化”培養模式打破了目前應用統計專業碩士統一培養、與市場需求脫節的模式壁壘,教學實踐以市場需求為導向,依照企業的崗位標準、用人要求,強調以崗位需求制定培養方案,更好地滿足用人單位對大數據分析人才的需求。
3.3 開展校企協同培養,構建問題導向、項目牽引的實踐教學模式
根據國務院學位委員會的規定,應用統計學專業碩士學位研究生教育的目的是培養具有良好的統計學背景,系統掌握數據采集、處理、分析和開發的知識與技能,具備熟練應用計算機處理和分析數據的能力,能夠并適應行業或職業實際工作需要的應用型高層次人才。因此,要摒棄普遍存在的重理論輕實踐、重知識輕技能的教學方式。
協同創新培養在實踐教學中建立了以問題為導向,以項目為牽引的運作機制,強調實踐教學內容的呈現方式要面向企業需求,讓學生參與到企業的項目運行過程中,引導學生建立業務建模能力,培養學生的數據資源整合能力,激發學生參與項目的積極性和自覺性。學生不拘泥于學校的實驗實訓基地和各類實驗室,在第二學年中安排一定時間走出校門,進入到企業的實際環境中,參與企業的項目組織、實施過程,在實踐過程中提升自我認知能力,在實踐過程應用知識和理論研究實際問題的能力,培養和鍛煉數據資源整合能力、溝通協調能力、IT支撐能力、業務建模能力,真正實現面向能力培養的目的。指導教師方面,在案例教學和實習階段引進業務素質高、項目經驗豐富、對大數據發展有敏銳洞察力的企業高級數據分析人員,指導學生在實習實踐中提出問題、建立模型、解決問題的能力。
4 結語
應用統計(大數據分析)專業碩士人才協同培養模式,是一項可持續發展的應用統計專業碩士人才培養的新模式,是專業碩士教學實踐的創新舉措,也是在全國率先建立起來的立足統計學,在大數據分析人才層面建立的校校協同、校企系統辦學體。體現了面向能力培養、面向社會需求培養、面向人才價值培養的“三個面向”的培養目標,著重培養學生分析數據、處理數據、展示數據的能力,對于培養“高層次、實用性、復合型、國際化”大數據分析人才意義重大,同時也是順應大數據技術革命的浪潮,必將對大數據等新興技術產業的發展注入活力。
(首都經濟貿易大學,北京 100070)
參考文獻:
[1]劉軍.Hodoop大數據處理[M].人民郵電出版社,2013.
[2]大數據的四個典型特征[N].中國電子報、電子信息產業網,2012(12).
[3]CCF大數據專家委員會.2014年大數據發展趨勢預測[J].中國計算機學會通訊,2014(1):32-36.
關鍵詞:大數據時代;統計學;影響
隨著大數據時代的到來,各企業采用了新的策略,獲得了更多的利潤。對于統計專業來說,改變發展策略,使培養出來的專業人才能夠適應大數據背景的需求是其主要任務。目前,高校統計學專業逐漸認識到大數據時代綜合性人才培養的重要性,并對專業建設進行了相關改革。
一、大數據時代對統計學的影響
大數據時代的到來對現代統計專業的發展造成了新的沖擊,要確保培養出來的人才能夠起到應有的作用,首先要了解大數據時代對統計專業所造成的影響。
(一)大數據時代使數據結構和數據性質發生變化
網絡技術以及基于網絡技術的電子商務等新的數據記錄模式標志著大數據時代的到來。大數據時代,不再依賴于抽樣調查的記錄模式,網站瀏覽、視頻監控都將形成大量數據。傳統的數據結構甚至是數據性質發生了變化。大量的數據信息對于需求者來說,如何甄別其可用價值成為關鍵。傳統的數據可以二維表格顯示和整理。但大數據時代所產生的數據具有多樣化和復雜化特征,往往包含了大量的音頻、視頻、HTML等。這要求大數據的收集具有較強的目的性,才能實現其價值。
(二)大數據時代要求統計分析方法和統計思維更新
大數據時代的主要特征為數據多且復雜,數據分析要求分析者對總體進行分析。在這一背景下,參數統計不再具有意義,假設檢驗法也隨著總體分析而失去價值。數據的復雜化對傳統大數據統計思維造成了巨大的沖擊,要求統計者具有活躍的思維。只有對傳統數據的改變進行分析,并且樹立新的統計方法。
二、大數據時代下的統計學發展新策略
為適應大數據時代的需求,統計學專業的發展勢必要對傳統模式進行改革。目前,多數高校統計學專業已經認識到大數據對于其發展帶來的沖擊。為此,本文提出了以下策略,以及能夠幫助統計學取得更好發展。
(一)加強統計應用性教學
根據大數據時代數據的總體分析特征,數據分析人員應掌握全面的分析方法。在人才培養過程中,應致力于培養實踐分析能力,提高數據和資料收集能力,并且培養其強烈的數據價值觀,使其能夠從眾多數據中找到所需的。另外,對傳統模式進行改革,增加大數據統計內容,以適應時代的需求。基于大數據的結構特點,實施資料透視化教學,提高分析者對復雜數據的分析能力。
(二)培養大數據統計思維
在人才培養過程中,新的統計思維的培養具有重要意義,即強調數據分析實踐能力的提高。統計思維的培養有助于數據分析者對復雜的數據進行區分,從而整理有效信息。在大數據時代,不僅要以傳統的平均思維、動態思維和變異思維為基礎,還要注重基于整體分析的大數據思維。另外,還要培養數據分者的復雜性思維,以應對復雜的數據庫。總之,大數據時代需要數據分析者具有全面的、創新性的思維。
(三)強化基礎性統計知識
統計學自身具有復雜性,其改變多且抽象。基礎的統計知識是進一步掌握大數據分析思維的基礎,可見學習基礎性統計知識的重要性是不言而喻的。為此,應該采取深入淺出的方法,利用多媒體等方式使復雜的數據統計清晰化、簡單化。結合具體的案例使數據分析者正確認識統計概念、掌握統計原理和方法。此外大數據分析不再是一種專業,而是更傾向于一種技術,這要求我們將大數據分析與統計學以外的相關知識相互聯系。注重真實相關與偽相關的講解,強調商務智能的開發和分析。只有具有堅實的基礎,才能確保數據分析者大數據分析思維的養成,適應現代社會的需求。
(四)加強復合型人才培養
為適應大數據時代的需求,復合型人才的培養是關鍵。所謂復合型人才,是指其不但要具有專業的數據分析能力,還要相應的具備管理以及其從事專業的技術。大數據時代,高校應建立全面的人才培養模式,注重培養人才的數據分析能力、編程能力等,使其真正了解大數據,懂得如何利用大數據對其所處的行業起到積極作用才是關鍵。總之,大數據時代對綜合性人才具有更高的需求,大數據時代不僅培養的是一種能力,而且是一種思維,是對全新模式下的數據的分析和利用。高校作為人才培養的重要基地,其教學模式的改革、對大數據時代所需教學模式的認識是高校的主要任務。
三、總結
統計學是經濟學的基礎課程,傳統的統計人才培養具有定向性。而隨著大數據時代的到來,數據產生的形式多樣,且具有復雜性。大數據分析不僅是作為一種專業存在,而是應以一項必備的技術而存在。大數據時代,傳統的統計思維和統計方法發生了改變,統計人才培養方式的改革也就勢在必行。(作者單位:海南師范大學)
參考文獻:
[1] 朱懷慶.大數據時代對本科經管類統計學教學的影響及對策[J].高等教育研究,2014(3).
[2] 姚壽福.經濟管理類本科專業統計學課程教學改革思考[J].高等教育研究,2012(3).
[3] 孫耀東.大數據背景下統計學專業課程教學探究[J].廊坊師范學院學報(自然科學版),2015(06).
應用統計專業學位的設立是為了適應現代統計事業發展對應用統計專門人才的需要而設置的,它的培養目標主要是讓學生掌握扎實的理論基礎和系統的專業知識和技能,具備數據采集、整理、分析和開發的能力,能夠從事統計調查咨詢、數據分析等“應用型”統計專門人才[5]110-111。然而,在大數據環境下實現的數據分析已不再局限于某一類特殊的行業統計分析需要,各行各業的運作發展都越來越依賴于大數據環境的存儲、計算、統計分析與決策。對于多樣化的大數據集,其所涉及的內容和知識結構必然是不同學科的交叉應用。大數據時代的數據分析專業人才的培養目標并不僅僅是傳統的數據收集、整理與分析,而是需要掌握能適應大數據特點的新的研究方法和獨立分析的能力,能很好地融會貫通其他專業的知識內涵,成為真正意義的專業大數據分析人才。然而傳統的統計學人才培養目標和教學模式并不符合社會對大數據分析專業能力的要求。參考和借鑒文獻[6-7]8-9,226提出來的一些建議,筆者探索從以下幾個方面對人才培養目標和教學培養模式進行改革:(一)走出校園,深入社會,挖掘并歸納出社會用人單位對數據分析專業職位技能和能力素質要求,進而制定符合社會需求的人才培養目標,以市場需求為導向更好地指導教學實踐活動。為了更好地為用人單位輸送符合大數據時代需求的專業數據分析人才,嘗試對高年級學生的培養方案設計中考慮以崗位需求為標準靈活調整和制定相應的培養目標和內容。(二)參考國外本科生專業人才培養的先進理念,引入“協作式”培養模式,大力支持大型企業與高校合作或高校與高校合作培養復合型和開發型人才。各個高校、企業可以發揮各自專業特長來實現合作,高校的不同專業之間也應該加強溝通和協作,例如在制定應用統計專業數據分析人才培養方案及實施過程中,可以以統計學科所在的學院為主導,讓計算機學科、經濟、金融及管理學科等相關學院協作參與完成[8-9]60-64。(三)總結教學過程存在的不足,探索新的知識學習和能力培養的創新模式。目前的教學活動主要以老師獨立授課,學生被動接受知識為主的方式,培養過程計劃性強,缺乏彈性,培養的評價也過于單一。在本科生培養中可以引入課程學習、導師指導和科學研究三個階段,考慮采用導師指導與集體培養相結合的方式,一門專業課程的講授不再局限于單個老師完成,在培養方案中考慮主題分組方式,鼓勵授課教師根據自己的專業特點和知識背景共同參與一門課程的教學活動。多名教師協同工作的模式可以取長補短,在大數據分析的實際案例設計及課程內容上都更加貼近實際需求,產生更好的教學效果[6]8-9。
二、基于大數據分析的特點科學構建課程體系
大數據背景下,人們可以通過互聯網、數據庫以及各種通信工具獲得海量數據,人們日常生活、學習和工作的各類事物都可以實現信息化,世界幾乎是由各種信息和數據所構成的。大數據的特點可以歸結為四個V,數量大(Volume)、類型繁多(Variety)、價值密度低(Value)、速度快時效高(Velocity)[6]8-9。大數據的真正意義不在于能提供龐大的數據量,而是對海量的數據進行專業的處理和分析,并從中獲取用戶關注的信息。結合當前互聯網應用中大數據本身的特點,從大數據中挖掘出重要知識并對之深度學習和分析的工具和方法也應與時俱進地發生改變,傳統的統計方法和統計分析工具已無法滿足大數據分析的需要。然而,在大多數高等院校中,統計學專業人才培養的課程體系并沒有考慮社會的實際應用需求,仍然停留在以傳統的統計模型框架為主導的課程體系設置,本科生教育的主要專業課程包括:數學分析、高等概率論與數理統計、應用隨機過程、回歸分析和多元統計分析等[10]248-249,這些課程內容和知識結構還不足以滿足大數據時代對數據分析專業人才知識結構的要求,課程體系設置中缺少能有效整合的數據分析能力培養模塊[11]66-68。因此,有必要針對各類院校師生各自的專業特點和學科基礎,分層次、分階段地展開課程體系改革。(一)參考國內外先進高校大數據分析專業的課程設置,結合本校的師資和專業結構特點采取靈活的策略制定課程計劃,在實施學分制改革的高校中各類學生可以在學業導師指導下實施符合學生自身特點的課程學習方案。(二)以大數據分析人才需求驅動的課程體系改革要考慮市場的行業需求變化、大數據應用中跨學科的特點。素質好的數據分析人員不僅僅要具備專業的數據分析能力,還應該對具體數據中涉及的學科知識有較好的儲備,能將不同行業的專業知識與數據分析緊密關聯起來,實現大數據分析的效用最大化。此外,在充分借鑒國內外大學成功經驗的基礎上,課程設置應該與學生的學術傾向和基礎能力緊密結合,注重基礎課程教育的同時強調文理滲透,同時要兼顧學生的興趣與學習的聯系,在課程體系的設置中需要增設一些多領域、跨學科的選修課程,如經濟學、金融學、保險學、管理學和會計學等。因此,校內跨學科或高校與高校之間聯合培養是實現跨學科課程建設的有效方法之一。(三)科學構建課程體系的主要思路還包括根據大數據時代需求,對專業必修和專業選修課程在課程時間、順序及內容等方面進行改革。專業必修課程重點內容為統計學和計算機科學的交叉部分,在講授統計基礎理論(如多元統計、決策樹、時間序列等)課程基礎上設置大數據案例分析課程,在案例分析過程中讓學生實際操作企業當前應用的大數據計算平臺[6]8-9,從而增強學生大規模分布式計算技能。為提高學生的實際動手和二次開發能力,專業選修課程需更多地開設與數據挖掘及面向數據的編程語言相關的課程,如數據挖掘算法、C++、Java和Python等課程,強化學生的數據挖掘和分析能力。
三、基于協同創新的理念開展實踐教學改革
近幾年,隨著應用型、創新型人才培養目標的提出,學校越來越重視和加強對各類專業人才實踐教學能力的培養,以“數據分析”為方向的專業人才需要運用統計分析軟件對數據進行分析和決策,其實踐教學的重要性更是不言而喻。然而,在大數據被廣泛應用的時代背景下,高等院校中的實踐教學仍然是培養高層次“大數據分析”人才的薄弱環節,實踐教學教材及內容不規范、教學方法單一、軟硬件的更新以及師資儲備等方面都存在著一些問題[12]96-97。例如以模型驅動為主的實踐教學模式已不適應大數據時代的要求,大數據時代數據是海量且復雜的,用簡單的SPSS、Eviews為主的軟件教學已無法處理大數據[5]110-111。因此,學習其他知名高校構建的協同創新的理念,結合財經類院校的統計學科及人才培養的特點,開展實踐教學改革[13]248-249。對“數據分析”專業人才實踐教學改革,筆者的建議如下:(一)根據協同創新理念,解決實踐教學環節存在的實驗教材(教學內容)缺乏實用性的問題,一方面可以參考企業對數據分析師、調查分析師資格認證相關培訓教材,開發實用性強的《數據分析》實踐教材,另一方面學校可以和企業或其他高校定期舉辦交流座談會,面向企業需求甄選實踐教學內容。(二)高素質的師資隊伍對人才的培養無疑起著至關重要的作用,在提高指導教師理論和實踐能力方面,借鑒協同創新聯合培養的模式可以有效充分地利用企業、學校的各方面師資資源。例如北京大學、中國科學院、中國人民大學、中央財經大學、首都經濟貿易大學5所高校已經與政府部門和產業界簽署了聯合培養大數據分析應用人才的合作協議[14]。廣東財經大學也可以參照類似聯合培養的做法,和廣東其他高校、政府和企業合作。一方面企業或政府可以利用自身的資源為高校提供人才培養實習基地,并且引薦相關的技術人員聘為校外實習導師,指導學生在實習實踐中建立以問題為導向,以項目為牽引的運作機制,讓學生能夠理論聯系實際,切身體會數據分析的商業操作體系。另一方面,由于高校的專業教師缺乏社會實踐的機會和經驗,高校應該制定政策鼓勵并推薦相關專業教師走出學校、走進企業,密切與企業合作交流,從而更進一步地提高教師對復合型專業學位人才培養的能力[15]29-32。(三)為了激發學生的學習熱情,減少對實踐操作的畏難情緒,實驗課程的教學方法也需要探索創新性實踐教育模式。教學過程可以考慮靈活的制定團隊教學計劃、案例實戰分析、模擬實訓等多樣化的方式,減少單一的課堂內容講授,在理論和實踐教學環節中積極調動學生的主觀能動性,提供更真實的企業大數據應用環境,并以學生為主完成實際案例分析。此外,基于不同的授課對象的特點,老師在教學過程中也要適當考慮學生的興趣和需求,隨時調整實驗教學策略[9]。
關鍵詞:大數據;統計學;發展
由于科學技術的不斷發展,大數據席卷了全球,各行各業在經營管理中都離不開大數據的統計與分析,對于政府單位來說,大數據更如經常便飯,大數據主要利用多樣式和多層次的采集方式進行數據采集,在分析數據時利用現代科學技術手段和高速處理數據的信息系統,分析的數據結果為公司或者政府單位的決策做參照。大數據的發展給統計學不僅帶來了機遇,更重要的還有挑戰。一方面信息技術和網絡科技的發展為數據收集和整理帶來了便利,另一方面由于近幾年電子商務的迅速崛起,數據量更加的繁雜,所以又給數據統計時帶來了麻煩,種類不斷增多的大數據資源,正在成為政府統計部門分析研究的重要領域。
一、大數據與統計學的區別
我們就大數據自身而言,要想在信息化迅猛發展、數字爆炸式增長的現代信息平臺中尋找到自己想要的有效數據,就必須依靠數據統計來完成。這就充分證明了關于大數據的相關研究是要和統計學緊密的聯系在一起的。但是其與統計學也存在巨大的差別,它的使用模式和運用方式是不一樣的。統計學需要依靠樣本抽樣的方法來進行數據整體和提煉的,這就意味著會有人力、物力以及財力的投入,其成本相對于大數據來說是比較高的而且過程是相對比較繁瑣的。而大數據主要依靠網絡信息平臺,在海量的電子數據信息中查找自己所需要的數據,具有來源廣、數據量大、整體性的特點,其是以整體的數據作為一個大樣本進行工作的,數據相對于統計學來說更加的精確化及標準化。因此,統計學和大數據的結合過程中,要充分發揮大數據全面性和統計學高效性的特點,在利用統計學進行大數據樣本的統計過程中要對整體的數據資源進行選擇和篩選,這樣能避免樣本統計的弊端,還可以把樣本統計的優勢發揮到極致。
二、大數據時代下統計學教育的發展
(一)培養全方面素質人才
統計學專業的學生與文管專業的還不一樣,文學專業的以及管理專業的學生都比較善于交際,善于溝通,而統計學是理科專業,很多學生只善于埋頭做題計算,這樣的話在以后的工作崗位就會感覺吃力,因為做數據統計,必須要與其他部門學會溝通,協同工作這樣才能把數據統計和分析的準確。要鍛煉自己的交際能力和溝通能力,針對不同數據信息做出不同的溝通與交流,從數據中挖出有價值的信息,需要本身具有數據敏感性,但是對數據的敏感程度也不是先天所帶來的,更不是一朝一夕就能鍛煉出來的,而是要經過時間的積累和數據分析工作的磨練,同時也可以根據案例型的數據分析材料,積累閱歷,提升對數據資源的敏感程度。
(二)培養統計學專業的應用型人才
大數據時代下培養的統計學應用型人才應該具有兩方面的基本素質,第一是概念性的,也就是說統計學的相關人才應該掌握統計學基本理論知識和基本素養,這是基本要求,也是培養統計學人才的前提。第二就是實踐性,也就是本文中我們提及的統計學專業的應用型人才,就是在實際操作中處理數據分析數據的能力,應用型人才需要利用理論知識解決實際問題,也需要有較多的經驗與閱歷,不能只會紙上談兵。在高校開展大數據分析學科中,最大的問題就是沒有真是可用的案例和數據,這就需要學校與公司企業走合作道路,這樣一來不僅可以得到真實有效的數據,還能將學生送到企業去實習,進行校企聯合,注重學生的實際操作能力,這是培養統計學專業應用型人才的關鍵點,也是統計學專業人才培養模式中的重點。
(三)促進統計學與信息計算科學的融合
在大數據的分析與研究時,僅僅憑借統計學科的支撐是不夠的,大數據的數據結構性特征已經拋棄了傳統意義上的數據分析模式的非智能化框架,而且數據分析需要利用新型的數據運算方式以及計算機技能分析,這也是進行數據分析的問題所在,因此要想做好數據統計和數據分析工作,只單單依靠單一的統計學科知識的人學習是遠遠不夠的,其需要的是數學,信息技術,統計學三門學科的融合發展,緊密結合三門學科之間的交叉發展,融會貫通,利用各科優勢資源相互彌補不足,這樣才能為大數據的收集,統計,分析做出科學準確的結果。
三、結語
學習統計學的優勢在于:我們可以利用統計學進行大數據的有效整合和利用,使得我們在使用數據時可以更加的便利和高效。隨著信息科學技術的進一步發展,來自各方面的數據出現井噴的狀態,這就增添了我們在數據統計和信息處理時的困難。在現在這個信息化數據爆炸式增長的形勢下,我們要充分全面的利用各方面的數據資源才能充分發揮統計學的優勢,做好預測和分析,同時充分將統計學的優點與完備的大數據資源實現有效的整合,讓統計變得通俗易懂。
參考文獻: