繼電保護論文8篇

時間:2023-03-30 10:40:10

緒論:在尋找寫作靈感嗎?愛發表網為您精選了8篇繼電保護論文,愿這些內容能夠啟迪您的思維,激發您的創作熱情,歡迎您的閱讀與分享!

繼電保護論文

篇1

【論文摘要】:繼電保護裝置在電力系統中發揮著重要作用,其正常工作與否將對電力系統的運行造成重大影響,因此如何提高繼電保護裝置的可靠性也就成為人們日益關注的重要課題。文章分析了繼電保護裝置狀態檢修的時機,以及如何利用狀態檢修提高繼電裝置的安全性。

繼電保護裝置在電力系統中發揮著重要作用,其正常工作與否將對電力系統的運行造成重大影響,如何提高繼電保護裝置的可靠性也就成為人們日益關注的重要課題。因此,有必要對電力系統"狀態檢修"進行梳理和分析,以期對今后的工作有所助益。

一、狀態檢修定義

狀態檢修,也叫預知性維修,顧名思義就是根據設備運行狀態的好壞來確定是否對設備進行檢修。狀態檢修是根據設備的狀態而進行的預防性作業。狀態檢修的目標是減少設備停運時間,提高設備可靠性和可用系數,延長設備壽命,降低運行檢修費用,改善設備運行性能,提高經濟效益。

二、繼電保護裝置的"狀態"識別

1.重視設備初始狀態的全面了解

設備的初始狀態如何,對其今后的安全運行有著決定性的影響。設備良好的初始狀態是減少設備檢修維護工作量的關鍵,也是狀態檢修工作的關鍵環節。因此,實現狀態檢修首先要做好設備的基礎管理工作。需要特別關注的有兩個方面的工作,一方面是保證設備在初始時是處于健康的狀態,不應在投入運行前具有先天性的不足。另一方面,在設備運行之前,對設備就應有比較清晰的了解,掌握盡可能多的''''指紋''''信息。包括設備的銘牌數據、型式試驗及特殊試驗數據、出廠試驗數據、各部件的出廠試驗數據及交接試驗數據和施工記錄等信息。

2.注重設備運行狀態數據的統計分析

要實行狀態檢修,必須要有能描述設備狀態的準確數據。也就是說,要有大量的有效信息用于分析與決策。設備部件在載荷和環境條件下產生的磨損、腐蝕、應力、蠕變、疲勞和老化等原因,最后失效造成設備損壞而停止運行。這些損壞是逐漸發展的,一般是有一定規律的,在不同狀態下,有的是物理量的變化,有的是化學量的變化,有的是電氣參數的變化,另外,還有設備的運轉時間、啟停次數、負荷的變化、越限數據與時間、環境條件等。因此要加強對繼電保護裝置歷史運行狀態的數據分析。

3.應用新的技術對設備進行監測和試驗

開展狀態檢修工作,大量地采用新技術是必然的。在目前在線監測技術還不夠成熟得足以滿足狀態檢修需要的情況下,只有在線數據與離線數據相結合,進行多因素地綜合分析評價,才有可能得到更準確、可信的結論。此外,還可以充分利用成熟的離線監測裝置和技術,如紅外熱成像技術、變壓器繞組變形測試等,對設備進行測試,以便分析設備的狀態,保證設備和系統的安全。

三、開展繼電保護狀態檢修應注意的問題

1.要嚴格遵循狀態檢修的原則

實施狀態檢修應當依據以下原則:一是保證設備的安全運行。在實施設備狀態檢修的過程中,以保證設備的安全運行為首要原則,加強設備狀態的監測和分析,科學、合理地調整檢修間隔、檢修項目,同時制定相應的管理制度。二是總體規劃,分步實施,先行試點,逐步推進。實施設備狀態檢修是對現行檢修管理體制的改革,是一項復雜的系統工程,而我國又尚處于探索階段,因此,實施設備狀態檢修既要有長遠目標、總體構想,又要扎實穩妥、分步實施,在試點取得一定成功經驗的基礎上,逐步推廣。三是充分運用現有的技術手段,適當配置監測設備。

2.重視狀態檢修的技術管理要求

狀態檢修需要科學的管理來支撐。繼電保護裝置在電力系統中通常是處于靜態的,但在電力系統中,需要了解的恰巧是繼電保護裝置在電力系統故障時是否能快速準確地動作,即要把握繼電保護裝置動態的"狀態"。因此,根據對繼電保護裝置靜態特性的認識,對其動態特性進行判斷顯然是不合適的。因此,通過模擬繼電保護裝置在電力事故和異常情況下感受的參數,使繼電保護裝置啟動和動作,檢查繼電保護裝置應具有的邏輯功能和動作特性,從而了解和把握繼電保護裝置狀況,這種繼電保護裝置的檢驗,對于電力系統是很有必要的和必須的。

3.開展繼電保護裝置的定期檢驗

實行狀態檢驗以后,為了確保繼電保護和自動裝置的安全運行,要加強定期測試,所有集成、微機和晶體管保護要每半年進行一次定期測試,測試項目包括:微機保護要打印采樣報告、定值報告、零漂值,并要對報告進行綜合分析,做出結論;晶體管保護要測試電源和邏輯工作點電位,現場發現問題要找出原因,及時處理。

4.高素質檢修人員的培養

高素質檢修人員是狀態檢修能否取得成功的關鍵。在傳統的檢修模式中,運行人員是不參與檢修工作的。狀態檢修要求運行人員與檢修有更多聯系,因為運行人員對設備的狀態變化非常了解,他們直接參與檢修決策和檢修工作對提高檢修效率和質量有積極意義。其優點是可以加強運行部門的責任感;取消不必要的環節,節約管理費用;迅速采取檢修措施,消除設備缺陷。

綜上所述,狀態檢修是根據設備運行狀況而適時進行的預知性檢修,"應修必修"是狀態檢修的精髓。狀態檢修既不是出了問題才檢修,也不是想什么時候檢修才檢修。實行狀態檢修仍然要貫徹"預防為主"的方針,通過適時檢修,提高保護裝置運行的安全可靠性,提高繼電保護裝置的正確動作率。因此,實行"狀態檢修"的單位一定要把電力設備的"狀態"搞清楚,對設備"狀態"把握不準時,一定要慎用"狀態檢修"。

參考文獻

[1]陳維榮,宋永華,孫錦鑫.電力系統設備狀態監測的概念及現狀[J].電網技術,2000(11).

[2]張國峰,梁文麗,李玉龍.電力系統繼電保護技術的未來發展[J].中國科技信息,2005(02).

[3]郭偉.論繼電保護裝置的"狀態檢修"[J].水利電力機械,2007年9月.

[4]李萬寶.淺議繼電保護信息化管理[J].大眾科技,2004(12).

[5]李永麗,李致中,楊維.繼電保護裝置可靠性及其最佳檢修周期的研究[J].中國電機工程學報,2001年6月.

[6]陳德樹.繼電保護運行狀況評價方法的探討[J].電網技術,2000(3).

[7]李彤.從狀態監測實踐探討狀態檢修工作的開展[J].農村電氣化,2005(2).

[8]陳三運.輸變電設備的狀態檢修[M].北京:中國電力出版社,2004年.

[9]張鋒.關于供電設備狀態檢修的思考[J].中國資源綜合利用,2008年第1期.

[10]倪強冰.探討繼電保護的狀態檢修及實施[J].廣東科技,2007年第2期.

篇2

論文摘要:介紹了光纖通道的特點和工作原理,以及目前在電力光纖網絡中光纖保護裝置與光纖通道的連接方式和主要特點,討論了光纖保護在實際應用中可能遇到的問題及其解決辦法。

隨著通信技術的發展,在縱聯保護通道的使用上,已經由原來的單一的載波通道變為現在的載波、微波、光纖等多種通道方式。由于光纖通道所具有的先天優勢,使它與繼電保護的結合,在電網中會得到越來越廣泛的應用。

1光纖通道作為縱聯保護通道的優勢

光纖通道首先在通信技術中得到廣泛的應用,它是基于用光導纖維作為傳輸介質的一種通信手段。光纖通道相對于其他傳統通道(如:電纜、微波等)具有如下特點:

1.1傳輸質量高,誤碼率低,一般在10-10以下。這種特點使得光纖通道很容易滿足繼電保護對通道所要求的"透明度"。即發端保護裝置發送的信息,經通道傳輸后到達收端,使收端保護裝置所看到的信息與發端原始發送信息完全一致,沒有增加或減少任何細節。

1.2光的頻率高,所以頻帶寬,傳輸的信息量大。這樣可以使線路兩端保護裝置盡可能多的交換信息,從而可以大大加強繼電保護動作的正確性和可靠性。

1.3抗干擾能力強。由于光信號的特點,可以有效的防止雷電、系統故障時產生的電磁方面的干擾,因此,光纖通道最適合應用于繼電保護通道。

以上光纖通道的三個特點,是繼電保護所采用的常規通道形式所無法比擬的。在通道選擇上應為首選。但是由于光纜的特點,抗外力破壞能力較差,當采用直埋或空中架設時,易于受到外力破壞,造成機械損傷。若采用OPGW,則可以有效的防止類似事件的發生。

2光纖通道與光纖保護裝置的配合方式

目前,縱聯保護采用光纖通道的方式,得到了越來越廣泛的應用,在現場運行設備中,主要有以下幾種方式:

2.1專用光纖保護:

光纖與縱聯保護(如:WXB-11C、LFP-901A)配合構成專用光纖縱聯保護。采用允許式,在光纖通道上傳輸允許信號和直跳信號。此種方式,需要專用光纖接口(如:FOX-40),使用單獨的專用光芯。優點是:避免了與其他裝置的聯系(包括通信專業的設備),減少了信號的傳輸環節,增加了使用的可靠性。缺點是:光芯利用率降低(與復用比較),保護人員維護通道設備沒有優勢。而且,在帶路操作時,需進行本路保護與帶路保護光芯的切換,操作不便,而且光接頭經多次的拔插,易造成損壞。

2.2復用光纖保護:

光纖與縱聯保護(如:7SL32、WXH-11、CSL101、WXH-11C保護)配合構成復用光纖縱聯保護。采用允許式,保護裝置發出的允許信號和直跳信號需要經音頻接口傳送給復用設備,然后經復用設備上光纖通道。優點是:接線簡單,利于運行維護。帶路進行電信號切換,利于實施。提高了光芯的利用率。缺點是:中間環節增加,而且帶路切換設備在通信室,不利于運行人員巡視檢查,通信設備有問題要影響保護裝置的運行。

2.3光纖縱聯電流差動保護:

光纖電流差動保護是在電流差動保護的基礎上演化而來的,基本保護原理也是基于克希霍夫基本電流定律,它能夠理想地使保護實現單元化,原理簡單,不受運行方式變化的影響,而且由于兩側的保護裝置沒有電聯系,提高了運行的可靠性。目前電流差動保護在電力系統的主變壓器、線路和母線上大量使用,其靈敏度高、動作簡單可靠快速、能適應電力系統震蕩、非全相運行等優點是其他保護形式所無法比擬的。光纖電流差動保護在繼承了電流差動保護的這些優點的同時,以其可靠穩定的光纖傳輸通道保證了傳送電流的幅值和相位正確可靠地傳送到對側。時間同步和誤碼校驗問題是光纖電流差動保護面臨的主要技術問題。在復用通道的光纖保護上,保護與復用裝置時間同步的問題對于光纖電流差動保護的正確運行起到關鍵的作用,因此目前光纖差動電流保護都采用主從方式,以保證時鐘的同步;由于目前光纖均采用64Kbit數字通道,電流差動保護通道中既要傳送電流的幅值,又要傳送時間同步信號,通道資源緊張,要求數據的誤碼校驗位不能過長,這樣就影響了誤碼校驗的精度。目前部分廠家推出的2Mbit數字接口的光纖電流差動保護能很好地解決誤碼校驗精度的問題。3光纖保護實際應用中存在的問題

3.1施工工藝問題

光纖保護是超高壓線路的主保護,通道的安全可靠對電力系統的安全、穩定運行起到重要的作用。由于光纜傳輸需要經過轉接端子箱、光纜機、電纜層和高壓線路等連接環節,并且光纖的施工工藝復雜、施工質量要求高,因此如果在保護裝置投入運行前的施工、測試中存在誤差,則會導致保護裝置的誤動作,進而影響全網的安全穩定運行。

3.2通道雙重化問題

光纖保護用于220kV及以上電網時,按照220kV及以上線路主保護雙重化原則的要求,縱聯保護的信號通道也要求雙重化,高頻保護由于是在不同的相別上耦合,因此能滿足雙通道的要求,如果使用2套光纖保護作為線路的主保護,通道雙重化的問題則一直限制著光纖保護的大規模推廣應用。

3.3光纖保護管理界面的劃分問題

隨著保護與通信銜接的日益緊密,繼電保護專業與通信專業管理界面日益難以區分,如不從制度上解決這一問題,將直接影響到光纖保護的可靠運行。對于獨立纖芯的保護,通信專業與繼電保護專業管理的分界點在通信機房的光纖配線架上。配線架以上包括保護裝置的那段尾纖,屬于繼電保護專業維護,這就要求繼電保護專業人員具備一定的光纖校驗維護技能。

3.4光纖保護在旁路代路上的問題

線路光纖保護在旁路代路時不方便操作,由于光纖活接頭不能隨便拔插,每次拔插都需要重新作衰耗測試,而且經常性拔插也容易造成活接頭的損壞,因此不宜使用拔插活接頭的辦法實現光纖通道的切換。對于電網中沒有單獨的旁路保護,旁路代路時是切換交流回路,因此不存在通道切換問題,但對電網有獨立的旁路保護,對于光纖閉鎖式、允許式縱聯保護暫時可以采用切換二次回路的方式,但對于光纖差動電流保護則無法代路,目前都是采取旁路保護單獨增設一套光纖差動保護的方法解決。已有部分廠家在謀求解決光纖保護切換問題的辦法,如使用光開關來實現光纖通道切換。

結束語

盡管目前光纖保護在長距離和超高壓輸電線路上的應用還有一定的局限性,在施工和管理應用上仍存在不足,但是從長遠看,隨著光纖網絡的逐步完善、施工工藝和保護產品技術的不斷提高,光纖保護將占據線路保護的主導地位。

參考文獻

篇3

【關鍵詞】繼電保護現狀發展

1繼電保護發展現狀

電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。

建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術[1],建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。

自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上[2],結束了500kV線路保護完全依靠從國外進口的時代。

在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用[3],天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。

我國從70年代末即已開始了計算機繼電保護的研究[4],高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。

2繼電保護的未來發展

繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。

2.1計算機化

隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。

南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。

電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。

繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。\

2.2網絡化

計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。

對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。

對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理[6],初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。

由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。

2.3保護、控制、測量、數據通信一體化

在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。

目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。

2.4智能化

近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始[7]。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果[8]。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。

3結束語

建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。

作者單位:天津市電力學會(天津300072)

參考文獻

1王梅義.高壓電網繼電保護運行技術.北京:電力工業出版社,1981

2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)

3沈國榮.工頻變化量方向繼電器原理的研究.電力系統自動化,1983(1)

4葛耀中.數字計算機在繼電保護中的應用.繼電器,1978(3)

5楊奇遜.微型機繼電保護基礎.北京:水利電力出版社,1988

6HeJiali,Luoshanshan,WangGang,etal.ImplementationofaDigitalDistributedBusProtection.IEEETransactionsonPowerDelivery,1997,12(4)

篇4

隨著微機保護裝置的應用普及,繼電保護二次系統的自動化水平得到不斷提高。許多當前由人工處理的模擬信息轉化為大量的數字信息,而技術管理人員也有許多用計算機實現的資料和試驗記錄文檔。信息的數字化使得我們可以將不同的數據源有機地結合起來,形成一個專業化的計算機應用系統。通過綜合分析數據,對設備實際運行狀況加強了解,消滅故障隱患,進一步保障系統安全運行。

1繼電保護信息管理系統的實現

1.1信息數據源的分布

二次系統所具備的信息來源可大致分為3部分:

a)由變電站微機保護裝置經RTU發送至調度端的實時運行數據;

b)繼電保護管理端(生技部門和繼電保護班組)所存放的設備管理資料、各類試驗記錄和運行制度等;

c)其他系統中需要了解繼電保護數據或可以提供繼電保護有關數據和參考資料的數據源接口。

1.2系統結構

怎樣有效地將信息數據源聯系起來,而對于各級用戶都能予以充分利用呢?我們可以考慮以調度監控計算機網絡系統的數據源為中心,建立圖1系統。

通過數據倉庫技術集成各類數據源,使用方法庫來支持各個不同等級客戶的分別應用,利用網絡功能實施數據交換,并且開放MIS的數據接口,基本實現對二次保護數據資源的充分利用。

1.3系統方法與功能

1.3.1數據倉庫和方法庫

a)數據倉庫是比傳統的關系數據庫更高一級的數據組織形式,它不僅支持海量數據的處理,而且對于動態存儲、應用程序接口、非結構化數據等方面都具有更強的性能。

b)方法庫是封裝了一系列分析處理方法的規則庫,也是應用程序軟件功能的集中表現,可通過設置各用戶權限來限制其對數據倉庫的查詢和讀、寫操作,維護數據的完整性,同時也限定了客戶的應用范圍。

1.3.2軟件應用功能

a)“三遙”數據的實時分析處理:各類二次信息的查詢,和以前定檢、定試記錄的比較,動作時間和次數的統計,故障、事故等報警事件的指示和響應等。

b)二次設備試驗的記錄管理、定試預告、定值單管理、材料管理等。主要由繼電保護班組人員填寫,其他部門共享查詢。

c)二次設備圖形管理系統具備GIS功能,支持圖形和數據庫相連,直接在圖形上查詢參數。

d)二次設備事故、缺陷記錄分析,各保護裝置運行狀況分析。主要是繼電保護技術專責完成,其他部門共享查詢。

e)設立一次設備參數接口。如電流、電壓、功率因素和高壓設備試驗記錄等,配合一次主接線圖查詢,可作為二次系統的輔助分析數據來源。

f)可使用電子函件和新聞公告板方便各部門間的信息交流。

1.3.3軟件開發工具

采用Microsoft(微軟)公司系列工具軟件進行開發,在實用性和兼容性上都可以體現應用的先進性及廣泛性。

篇5

關鍵詞:電力系統發電變電輸電配電

1.10KV供電系統在電力系統中的重要位置

電力系統是由發電、變電、輸電、配電和用電等五個環節組成的。在電力系統中,各種類型的、大量的電氣設備通過電氣線路緊密地聯結在一起。由于其覆蓋的地域極其遼闊、運行環境極其復雜以及各種人為因素的影響,電氣故障的發生是不可避免的。由于電力系統的特殊性,上述五個環節應是環環相扣、時時平衡、缺一不可,又幾乎是在同一時間內完成的。在電力系統中的任何一處發生事故,都有可能對電力系統的運行產生重大影響。例如,當系統中的某工礦企業的設備發生短路事故時,由于短路電流的熱效應和電動力效應,往往造成電氣設備或電氣線路的致命損壞還有可能嚴重到使系統的穩定運行遭到破壞;當10KV不接地系統中的某處發生一相接地時,就會造成接地相的電壓降低,其他兩相的電壓升高,常此運行就可能使系統中的絕緣遭受損壞,也有進一步發展為事故的可能。

10KV供電系統是電力系統的一部分。它能否安全、穩定、可靠地運行,不但直接關系到企業用電的暢通,而且涉及到電力系統能否正常的運行。因此要全面地理解和執行地區電業部門的有關標準和規程以及相應的國家標準和規范。

由于10KV系統中包含著一次系統和二次系統。又由于一次系統比較簡單、更為直觀,在考慮和設置上較為容易;而二次系統相對較為復雜,并且二次系統包括了大量的繼電保護裝置、自動裝置和二次回路。所謂繼電保護裝置就是在供電系統中用來對一次系統進行監視、測量、控制和保護,由繼電器來組成的一套專門的自動裝置。為了確保10KV供電系統的正常運行,必須正確的設置繼電保護裝置。

2.10KV系統中應配置的繼電保護

按照工廠企業10KV供電系統的設計規范要求,在10KV的供電線路、配電變壓器和分段母線上一般應設置以下保護裝置:

(1)10KV線路應配置的繼電保護

10KV線路一般均應裝設過電流保護。當過電流保護的時限不大于0.5s~0.7s,并沒有保護配合上的要求時,可不裝設電流速斷保護;自重要的變配電所引出的線路應裝設瞬時電流速斷保護。當瞬時電流速斷保護不能滿足選擇性動作時,應裝設略帶時限的電流速斷保護。

(2)10KV配電變壓器應配置的繼電保護

1)當配電變壓器容量小于400KVA時:一般采用高壓熔斷器保護;

2)當配電變壓器容量為400~630KVA,高壓側采用斷路器時,應裝設過電流保護,而當過流保護時限大于0.5s時,還應裝設電流速斷保護;對于車間內油浸式配電變壓器還應裝設氣體保護;

3)當配電變壓器容量為800KVA及以上時,應裝設過電流保護,而當過流保護時限大于0.5s時,還應裝設電流速斷保護;對于油浸式配電變壓器還應裝設氣體保護;另外尚應裝設溫度保護。

(3)10KV分段母線應配置的繼電保護

對于不并列運行的分段母線,應裝設電流速斷保護,但僅在斷路器合閘的瞬間投入,合閘后自動解除;另外應裝設過電流保護。如采用的是反時限過電流保護時,其瞬動部分應解除;對于負荷等級較低的配電所可不裝設保護。

3.10KV系統中繼電保護的配置現狀

目前,一般企業高壓供電系統中均為10KV系統。除早期建設的10KV系統中,較多采用的是直流操作的定時限過電流保護和瞬時電流速斷保護外,近些年來飛速建設的電網上一般均采用了環網或手車式高壓開關柜,繼電保護方式多為交流操作的反時限過電流保護裝置。很多重要企業為雙路10KV電源、高壓母線分段但不聯絡或雖能聯絡但不能自動投入。在系統供電的可靠性、故障響應的靈敏性、保護動作的選擇性、切除故障的快速性以及運行方式的靈活性、運行人員的熟練性上都存在著一些急待解決的問題。

二繼電保護的基本概念

1.10KV供電系統的幾種運行狀況

(1)供電系統的正常運行

這種狀況系指系統中各種設備或線路均在其額定狀態下進行工作;各種信號、指示和儀表均工作在允許范圍內的運行狀況;

(2)供電系統的故障

這種狀況系指某些設備或線路出現了危及其本身或系統的安全運行,并有可能使事態進一步擴大的運行狀況;

(3)供電系統的異常運行

這種狀況系指系統的正常運行遭到了破壞,但尚未構成故障時的運行狀況。

2.10KV供電系統繼電保護裝置的任務

(1)在供電系統中運行正常時,它應能完整地、安全地監視各種設備的運行狀況,為值班人員提供可靠的運行依據;

(2)如供電系統中發生故障時,它應能自動地、迅速地、有選擇性地切除故障部分,保證非故障部分繼續運行;

(3)當供電系統中出現異常運行工作狀況時,它應能及時地、準確地發出信號或警報,通知值班人員盡快做出處理;

不難看出,在10KV系統中裝設繼電保護裝置的主要作用是通過縮小事故范圍或預報事故的發生,來達到提高系統運行的可靠性,并最大限度地保證供電的安全和不間斷。

可以想象,在10KV系統中利用熔斷器去完成上述任務是不能滿足要求的。因為熔斷器的安秒特性不甚完善,熄滅高壓電路中強烈電弧的能力不足,甚至有使故障進一步擴大的可能;同時還延長了停電的歷時。只有采用繼電保護裝置才是最完美的措施。因此,在10KV系統中的繼電保護裝置就成了供電系統能否安全可靠運行的不可缺少的重要組成部分。

3.對繼電保護裝置的基本要求

對繼電保護裝置的基本要求有四點:即選擇性、靈敏性、速動性和可靠性

(1)選擇性

當供電系統中發生故障時,繼電保護裝置應能有選擇性地將故障部分切除。也就是它應該首先斷開距離故障點最近的斷路器,以保證系統中其它非故障部分能繼續正常運行。系統中的繼電保護裝置能滿足上述要求的,就稱為有選擇性;否則就稱為沒有選擇性。

主保護和后備保護:

10KV供電系統中的電氣設備和線路應裝設短路故障保護。短路故障保護應有主保護、后備保護,必要時可增設輔助保護。

當在系統中的同一地點或不同地點裝有兩套保護時,其中有一套動作比較快,而另一套動作比較慢,動作比較快的就稱為主保護;而動作比較慢的就稱為后備保護。即:為滿足系統穩定和設備的要求,能以最快速度有選擇地切除被保護設備和線路故障的保護,就稱為主保護;當主保護或斷路器拒動時,用以切除故障的保護,就稱為后備保護。

后備保護不應理解為次要保護,它同樣是重要的。后備保護不僅可以起到當主保護應該動作而未動作時的后備,還可以起到當主保護雖已動作但最終未能達到切除故障部分的作用。除此之外,它還有另外的意義。為了使快速動作的主保護實現選擇性,從而就造成了主保護不能保護線路的全長,而只能保護線路的一部分。也就是說,出現了保護的死區。這一死區就必須利用后備保護來彌補不可。

近后備和遠后備:

當主保護或斷路器拒動時,由相臨設備或線路的保護來實現的后備稱為遠后備保護;由本級電氣設備或線路的另一套保護實現后備的保護,就叫近后備保護;

輔助保護:

為補充主保護和后備保護的性能或當主保護和后備保護退出運行而增設的簡單保護,稱為輔助保護。

(2)靈敏性

靈敏性系指繼電保護裝置對故障和異常工作狀況的反映能力。在保護裝置的保護范圍內,不管短路點的位置如何、不論短路的性質怎樣,保護裝置均不應產生拒絕動作;但在保護區外發生故障時,又不應該產生錯誤動作。保護裝置靈敏與否,一般用靈敏系數來衡量。保護裝置的靈敏系數應根據不利的運行方式和故障類型進行計算。靈敏系數Km為被保護區發生短路時,流過保護安裝處的最小短路電流Id.min與保護裝置一次動作電流Idz的比值,即:

Km=Id.min/Idz

靈敏系數越高,則反映輕微故障的能力越強。各類保護裝置靈敏系數的大小,根據保護裝置的不同而不盡相同。對于多相保護,Idz取兩相短路電流最小值Idz(2);對于10KV不接地系統的單相短路保護取單相接地電容電流最小值Ic.min;

(3)速動性

速動性是指保護裝置應能盡快地切除短路故障。

縮短切除故障的時間,就可以減輕短路電流對電氣設備的損壞程度,加快系統電壓的恢復,從而為電氣設備的自啟動創造了有利條件,同時還提高了發電機并列運行的穩定性。

所謂故障的切除時間是指保護裝置的動作時間與斷路器的跳閘時間之和。由于斷路器一經選定,其跳閘時間就已確定,目前我國生產的斷路器跳閘時間均在0.02S以下。所以實現速動性的關鍵是選用的保護裝置應能快速動作。

(4)可靠性

保護裝置應能正確的動作,并隨時處于準備狀態。如不能滿足可靠性的要求,保護裝置反而成為了擴大事故或直接造成故障的根源。為確保保護裝置動作的可靠性,則要求保護裝置的設計原理、整定計算、安裝調試要正確無誤;同時要求組成保護裝置的各元件的質量要可靠、運行維護要得當、系統應盡可能的簡化有效,以提高保護的可靠性。

4.繼電保護的基本原理

(1)電力系統故障的特點

電力系統中的故障種類很多,但最為常見、危害最大的應屬各種類型的短路事故。一旦出現短路故障,就會伴隨其產生三大特點。即:電流將急劇增大、電壓將急劇下降、電壓與電流之間的相位角將發生變化。

(2)繼電保護的類型

在電力系統中以上述物理量的變化為基礎,利用正常運行和故障時各物理量的差別就可以構成各種不同原理和類型的繼電保護裝置。如:

反映電流變化的電流保護,有定時限過電流保護、反時限過電流保護、電流速斷保護、過負荷保護和零序電流保護等;

反映電壓變化的電壓保護,有過電壓保護和低電壓保護;既反映電流的變化又反映電壓與電流之間相位角變化的方向過電流保護;

反映電壓與電流之間比值,也就是反映短路點到保護安裝處阻抗的距離保護;反映輸入電流與輸出電流之差的差動保護,其中又分為橫聯差動和縱聯差動保護;

用于反映系統中頻率變化的周波保護;

專門用于反映變壓器內部故障的氣體保護(即瓦斯保護),其中又分為輕瓦斯和重瓦斯保護;

專門用于反映變壓器溫度變化的溫度保護等。

另外,10KV系統中一般可在進線處裝設電流保護;在配電變壓器的高壓側裝設電流保護、溫度保護(油浸變壓器根據其容量大小尚應考慮裝設氣體保護);高壓母線分段處應根據具體情況裝設電流保護等。

三幾種常用電流保護的分析

1.反時限過電流保護

(1)什麼是反時限過電流保護

繼電保護的動作時間與短路電流的大小有關,短路電流越大,動作時間越短;短路電流越小,動作時間越長,這種保護就叫做反時限過電流保護。

(2)繼電器的構成

反時限過電流保護是由GL-15(25)感應型繼電器構成的。這種保護方式廣泛應用于一般工礦企業中,感應型繼電器兼有電磁式電流繼電器(作為起動元件)、電磁式時間繼電器(作為時限元件)、電磁式信號繼電器(作為信號元件)和電磁式中間繼電器(作為出口元件)的功能,用以實現反時限過電流保護;另外,它還有電磁速斷元件的功能,又能同時實現電流速斷保護。采用這種繼電器,就可以采用交流操作,無須裝設直流屏等設備;通過一種繼電器還可以完成兩種保護功能(體現了繼電器的多功能性),也可以大大簡化繼電保護裝置。但這種繼電器雖外部接線簡單,但內部結構十分復雜,調試比較困難;在靈敏度和動作的準確性、速動性等方面也遠不如電磁式繼電器構成的繼電保護裝置。

(3)反時限過電流保護的基本原理

當供電線路發生相間短路時,感應型繼電器KA1或(和)KA2達到整定的一定時限后動作,首先使其常開觸點閉合,這時斷路器的脫扣器YR1或(和)YR2因有KA1或(和)KA2的常閉觸點分流(短路),而無電流通過,故暫時不會動作。但接著KA1或(KA2)的常閉觸點斷開,因YR1或(和)YR2因“去分流”而通電動作,使斷路器跳閘,同時繼電器本身的信號掉牌掉下,給出信號。

在這里應予說明,在采用“去分流”跳閘的反時限過電流保護裝置中,如繼電器的常閉觸點先斷開而常開觸點后閉合時,則會出現下列問題:

1)繼電器在其常閉觸點斷開時即先失電返回,因此其常開觸點不可能閉合,因此跳閘線圈也就不能通電跳閘;

2)繼電器的常閉觸點如先斷開,CT的二次側帶負荷開路,將產生數千伏的高電壓、比差角差增大、計量不準以及鐵心發熱有可能燒毀絕緣等,這是不允許的。

2.定時限過電流保護

(1)什麼是定時限過電流保護

繼電保護的動作時間與短路電流的大小無關,時間是恒定的,時間是靠時間繼電器的整定來獲得的。時間繼電器在一定范圍內是連續可調的,這種保護方式就稱為定時限過電流保護。

(2)繼電器的構成

定時限過電流保護是由電磁式時間繼電器(作為時限元件)、電磁式中間繼電器(作為出口元件)、電磁式電流繼電器(作為起動元件)、電磁式信號繼電器(作為信號元件)構成的。它一般采用直流操作,須設置直流屏。定時限過電流保護簡單可靠、完全依靠選擇動作時間來獲得選擇性,上、下級的選擇性配合比較容易、時限由時間繼電器根據計算后獲取的參數來整定,動作的選擇性能夠保證、動作的靈敏性能夠滿足要求、整定調試比較準確和方便。這種保護方式一般應用在10~35KV系統中比較重要的變配電所。

(3)定時限過電流保護的基本原理

10KV中性點不接地系統中,廣泛采用的兩相兩繼電器的定時限過電流保護的原理接線圖。它是由兩只電流互感器和兩只電流繼電器、一只時間繼電器和一只信號繼電器構成。

當被保護線路只設有一套保護,且時間繼電器的容量足大時,可用時間繼電器的觸點去直接接通跳閘回路,而省去出口中間繼電器。

當被保護線路中發生短路故障時,電流互感器的一次電流急劇增加,其二次電流隨之成比例的增大。當CT的二次電流大于電流繼電器的起動值時,電流繼電器動作。由于兩只電流繼電器的觸點是并聯的,故當任一電流繼電器的觸點閉合,都能接通時間繼電器的線圈回路。這時,時間繼電器就按照預先整定的時間動作使其接點吸合。這樣,時間繼電器的觸點又接通了信號繼電器和出口中間繼電器的線圈,使其動作。出口中間繼電器的觸點接通了跳閘線圈回路,從而使被保護回路的斷路器跳閘切斷了故障回路,保證了非故障回路的繼續運行。而信號繼電器的動作使信號指示牌掉下并發出警報信號。

由上不難看出,保護裝置的動作時間只決定于時間繼電器的預先整定的時間,而與被保護回路的短路電流大小無關,所以這種過電流保護稱為定時限過電流保護。

(4)動作電流的整定計算

過流保護裝置中的電流繼電器動作電流的整定原則,是按照躲過被保護線路中可能出現的最大負荷電流來考慮的。也就是只有在被保護線路故障時才啟動,而在最大負荷電流出現時不應動作。為此必須滿足以下兩個條:

1)在正常情況下,出現最大負荷電流時(即電動機的啟動和自啟動電流,以及用戶負荷的突增和線路中出現的尖峰電流等)不應動作。即:

Idz>Ifh.max

式中Idz----過電流保護繼電器的一次動作電流;

Ifh.max------最大負荷電流

2)保護裝置在外部故障切除后應能可靠地返回。因為短路電流消失后,保護裝置有可能出現最大負荷電流,為保證選擇性,

已動作的電流繼電器在這時應當返回。因此保護裝置的一次返回電流If應大于最大負荷電流fh.max。即:

If>Ifh.max

因此,定時限過電流裝置電流繼電器的動作電流Idz.j為:

Idz.j=(Kk.Kjx/Kf.Nlh).Ifh.max

式中

Kk------可靠系數,考慮到繼電器動作電流的誤差和計算誤差而設。一般取為1.15~1.25Kjx------由于繼電器接入電流互感器二次側的方式不同而引入的一個系數。電流互感器為三相完全星形接線和不完全星形接線時

Kjx=1;如為三角形接線和兩相電流差接線時Kjx=1.732;

Kf-------返回系數,一般小于1;

Nlh------電流互感器的變比。

(5)動作時限的整定原則

為使過電流保護具有一定的選擇性,各相臨元件的過電流保護應具有不同的動作時間。

在線路XL-1、XL-2、XL-3的靠近電源端分別裝有過電流保護裝置1、2、3。當D1點發生短路時,短路電流由電源提供并流過保護裝置1、2、3,當短路電流大于它們的整定值時,各套保護裝置均啟動。但按選擇性的要求,應只由保護裝置3(離故障點最近)動作于跳閘。在故障切除后,保護裝置1、2返回。因此就必須使保護裝置2的動作時間較保護裝置1長一些;而保護裝置3又要比保護裝置2長一些,并依次類推,即:

t1>t2>t3

不難看出,各級保護裝置的動作時限是由末端向電源端逐級增大的。也就是越靠近電源端,保護的動作時限越長,有如階梯一樣,故稱為階梯性時限特性。各級之間的時限均差一個固定的數值,稱其為時限級差Dt。對于定時限過電流保護的時限級差Dt一般為0.5S;對于反時限的時限級差Dt

一般為0.7S。可是,越靠近電源端線路的阻抗越小,短路電流將越大,而保護的動作時間越長。也就是說過電流保護存在著缺陷。這種缺陷就必須由電流速斷保護來彌補不可。

(6)過電流保護的保護范圍

過流保護可以保護設備的全部,也可以保護線路的全長,還可以作為相臨下一級線路穿越性故障的后備保護。

3.電流速斷保護

(1)什麼是電流速斷保護

電流速斷保護是一種無時限或略帶時限動作的一種電流保護。它能在最短的時間內迅速切除短路故障,減小故障持續時間,防止事故擴大。

電流速斷保護又分為瞬時電流速斷保護和略帶時限的電流速斷保護兩種。

(2)電流速斷保護的構成

電流速斷保護是由電磁式中間繼電器(作為出口元件)、電磁式電流繼電器(作為起動元件)、電磁式信號繼電器(作為信號元件)構成的。它一般不需要時間繼電器。常采用直流操作,須設置直流屏。電流速斷保護簡單可靠、完全依靠短路電流的大小來確定保護是否需要啟動。它是按一定地點的短路電流來獲得選擇性動作,動作的選擇性能夠保證、動作的靈敏性能夠滿足要求、整定調試比較準確和方便。

(3)瞬時電流速斷保護的整定原則和保護范圍

瞬時電流速斷保護與過電流保護的區別,在于它的動作電流值不是躲過最大負荷電流,而是必須大于保護范圍外部短路時的最大短路電流。即按躲過被保護線路末端可能產生的三相最大短路電流來整定。從而使速斷保護范圍被限制在被保護線路的內部,從整定值上保證了選擇性,因此可以瞬時跳閘。當在被保護線路外部發生短路時,它不會動作。所以不必考慮返回系數。由于只有當短路電流大于保護裝置的動作電流時,保護裝置才能動作。所以瞬時電流速斷保護不能保護設備的全部,也不能保護線路的全長,而只能保護線路的一部分。對于最大運行方式下的保護范圍一般能達到線路全長的50%即認為有良好的保護效果;對于在最小運行方式下的保護范圍能保護線路全長的15%~20%,即可裝設。保護范圍以外的區域稱為“死區”。因此,瞬時電流速斷保護的任務是在線路始端短路時能快速地切除故障。

當線路故障時,瞬時電流速斷保護動作,運行人員根據其保護范圍較小這一特點,可以判斷故障出在線路首端,并且靠近保護安裝處;如為雙電源供電線路,則由兩側的瞬時電流速斷保護同時動作或同時都不動作,可判斷故障在線路的中間部分。

(4)瞬時電流速斷保護的基本原理

瞬時電流速斷保護的原理與定時限過電流保護基本相同。只是由一只電磁式中間繼電器替代了時間繼電器。

中間繼電器的作用有兩點:其一是因電流繼電器的接點容量較小,不能直接接通跳閘線圈,用以增大接點容量;其二是當被保護線路上裝有熔斷器時,在兩相或三相避雷器同時放電時,將造成短時的相間短路。但當放完電后,線路即恢復正常,因此要求速斷保護既不誤動,又不影響保護的快速性。利用中間繼電器的固有動作時間,就可避開避雷器的放電動作時間。

(5)略帶時限的電流速斷保護

瞬時電流速斷保護最大的優點是動作迅速,但只能保護線路的首端。而定時限過電流保護雖能保護

線路的全長,但動作時限太長。因此,常用略帶時限的電流速斷保護來消除瞬時電流速斷保護的“死區”。要求略帶時限的電流速斷保護能保護全線路。因此,它的保護范圍就必然會延伸到下一段線路的始端去。這樣,當下一段線路始端發生短路時,保護也會起動。為了保證選擇性的要求,須使其動作時限比下一段線路的瞬時電流速斷保護大一個時限級差,其動作電流也要比下一段線路瞬時電流速斷保護的動作電流大一些。略帶時限的電流速斷保護可作為被保護線路的主保護。略帶時限的電流速斷保護的原理接線和定時限過電流保護的原理接線相同。

4.三段式過電流保護裝置

由于瞬時電流速斷保護只能保護線路的一部分,所以不能作為線路的主保護,而只能作為加速切除線路首端故障的輔助保護;略帶時限的電流速斷保護能保護線路的全長,可作為本線路的主保護,但不能作為下一段線路的后備保護;定時限過電流保護既可作為本級線路的后備保護(當動作時限短時,也可作為主保護,而不再裝設略帶時限的電流速斷保護。),還可以作為相臨下一級線路的后備保護,但切除故障的時限較長。

一般情況下,為了對線路進行可靠而有效的保護,也常把瞬時電流速斷保護(或略帶時限的電流速斷保護)和定時限過電流保護相配合構成兩段式電流保護。

對于第一段電流保護,究竟采用瞬時電流速斷保護,還是采用略帶時限的電流速斷保護,可由具體情況確定。如用在線路---變壓器組接線,以采用瞬時電流速斷保護為佳。因在變壓器高壓側故障時,切除變壓器和切除線路的效果是一樣的。此時,允許用線路的瞬時電流速斷保護,來切除變壓器高壓側的故障。也就是說,其保護范圍可保護到線路全長并延伸到變壓器高壓側。這時的第一段電流保護可以作為主保護;第二段一般均采用定時限過流保護作為后備保護,其保護范圍含線路---變壓器組的全部。

通常在被保護線路較短時,第一段電流保護均采用略帶時限的電流速斷保護作為主保護;第二段采用定時限過流保護作為后備保護。

在實際中還常采用三段式電流保護。就是以瞬時電流速斷保護作為第一段,以加速切除線路首端的故障,用作輔助保護;以略帶時限的電流速斷保護作為第二段,以保護線路的全長,用作主保護;以定時限過電流保護作為第三段,以作為線路全長和相臨下一級線路的后備保護。對于北京電信的10KV(含35KV)供電線路今后宜選用兩段式或三段式電流保護。

因為這種保護的設置可以在相臨下一級線路的保護或斷路器拒動時,本級線路的定時限過流保護可以動作,起到遠后備保護的作用;如本級線路的主保護(瞬時電流速斷或略帶時限的電流速斷保護)拒動時,則本級線路的定時限過電流保護可以動作,以起到近后備的作用。

5.零序電流保護

電力系統中發電機或變壓器的中性點運行方式,有中性點不接地、中性點經消弧線圈接地和中性點直接接地三種方式。10KV系統采用的是中性點不接地的運行方式。

系統運行正常時,三相是對稱的,三相對地間均勻分布有電容。在相電壓作用下,每相都有一個超前90°的電容電流流入地中。這三個電容電流數值相等、相位相差120°,其和為零.中性點電位為零。

假設A相發生了一相金屬性接地時,則A相對地電壓為零,其他兩相對地電壓升高為線電壓,三個線電壓不變。這時對負荷的供電沒有影響。按規程規定還可繼續運行2小時,而不必切斷電路。這也是采用中性點不接地的主要優點。但其他兩相電壓升高,線路的絕緣受到考驗、有發展為兩點或多點接地的可能。應及時發出信號,通知值班人員進行處理。

10KV中性點不接地系統中,當出現一相接地時,利用三相五鐵心柱的電壓互感器(PT)的開口三角形的開口兩端有無零序電壓來實現絕緣監察。它可以在PT柜上通過三塊相電壓表和一塊線電壓表(通過轉換開關可觀察三個線電壓)看到“一低、兩高、三不變”。接在開口三角形開口兩端的過電壓繼電器動作,其常開接點接通信號繼電器,并發出預告信號。采用這種裝置比較簡單,但不能立即發現接地點,因為只要網絡中發生一相接地,則在同一電壓等級的所有工礦企業的變電所母線上,均將出現零序電壓,接有帶絕緣監視電壓互感器的電力用戶都會發出預告信號。也就是說該裝置沒有選擇性。為了查找接地點,需要電氣人員按照預先制定的“拉路序位圖”依次拉路查找,并隨之合上未接地的回路,直到找到接地點為止。可以看出,這種方法費力、費時、安全性差,在某些情況下這樣做還是不允許的。因此,這種裝置存在一定的缺陷。

當網絡比較復雜、出線較多、可靠性要求高,采用絕緣監察裝置是不能滿足運行要求時,可采用零序電流保護裝置。它是利用接地故障線路零序電流較非接地故障線路零序電流大的特點構成的一種保護裝置。

零序電流保護一般使用在有條件安裝零序電流互感器的電纜線路或經電纜引出的架空線路上。當在電纜出線上安裝零序電流互感器時,其一次側為被保護電纜的三相導線,鐵心套在電纜外,其二次側接零序電流繼電器。當正常運行或發生相間短路時,一次側電流為零。二次側只有因導線排列不對稱而產生的不平衡電流。當發生一相接地時,零序電流反映到二次側,并流入零序電流繼電器,使其動作發出信號。在安裝零序電流保護裝置時,特別注意的一點是:電纜頭的接地線必須穿過零序電流互感器的鐵心。這是由于被保護電纜發生一相接地時,全靠穿過零序電流互感器鐵心的電纜頭接地線通過零序電流起作用的。否則互感器二次側也就不能感應出電流,因而繼電器也就不可能動作。

不難理解,當某一條線路上發生一相接地時,非接地線路上的零序電流為本身的零序電流。因此,為了保證動作的選擇性,在整定時,保護裝置的啟動電流Idz應大于本線路的電容電流,即:

Idz=Kh.3Uxan.w.Co=Kh.Io

式中Idz------保護裝置的啟動電流;

Kh-------可靠系數,如無延時,考慮到不穩定間歇性電弧所發生的振蕩涌流時,取4~5;如延時為0.5S時,則取1.5~2;

Uxan------相電壓值;

Co--------被保護線路每相的對地電容;

Io--------被保護線路的總電容電流。

按上式整定后,還需校驗在本線路上發生一相接地時的靈敏系數Klm,由于流經接地線路上的零序電流為全網絡中非接地線路電容電流的總和,可用3Uxan.w.(CS-Co)表示,因此靈敏系數為:

Klm=3Uxan.w.(CS-Co)/Kh.3Uxan.w.Co

=(CS-Co)/Kh.Co

上式可改寫成:

Klm=I0S-Io/Kh.Io

=I0S-Io/Idz

式中CS------同一電壓等級網絡中,各元件每相對地電容之和;

I0S------與CS

相對應的對地電容電流之和。對電纜線路取大于或等于1.25;架空線路取1.5;對于架空線路,由于沒有特制的零序電流互感器,如欲安裝零序電流保護,可把三相三只電流互感器的同名端并聯在一起,構成零序電流過濾器,再接上零序電流繼電器。其動作電流整定值中,要考慮零序電流過濾器中不平衡電流的影響。

四對北京電信10KV系統中繼電保護的綜合評價

1.定時限過電流保護與反時限過電流保護的配置

10KV系統中的上、下級保護之間的配合條件必須考慮周全,考慮不周或選配不當,則會造成保護的非選擇性動作,使斷路器越級跳閘。保護的選擇性配合主要包括上、下級保護之間的電流和時限的配合兩個方面。應該指出,定時限過電流保護的配合問題較易解決。由于定時限過電流保護的時限級差為0.5S,選擇電網保護裝置的動作時限,一般是從距電源端最遠的一級保護裝置開始整定的。為了縮短保護裝置的動作時限,特別是縮短多級電網靠近電源端的保護裝置的動作時限,其中時限級差起著決定的作用,因此希望時限級差越小越好。但為了保證各級保護裝置動作的選擇性,時限級差又不能太小。雖然反時限過電流保護也是按照時限的階梯原則來整定,其時限級差一般為0.7S。而且反時限過電流保護的動作時限的選擇與動作電流的大小有關。也就是說,反時限過電流保護隨著短路電流與繼電器動作電流的比值而變,因此整定反時限過電流保護時,所指的時間都是在某一電流值下的動作時間。還有,感應型繼電器慣性較大,存在一定的誤差,它的特性不近相同,新舊、型的特性也不相同。所以,在實際運行整定時,就不能單憑特性曲線作為整定的依據,還應該作必要的實測與調試。比較費力、費事。因此,反時限過電流保護時限特性的整定和配合就比定時限過電流保護裝置復雜得多。通過分析可以看出,北京電信10KV新建及在建工程中,應以配置三段式或兩段式定時限過電流保護、瞬時電流速斷保護和略帶時限的電流速斷保護為好。

2.北京電信10KV系統中高壓設備的配置

目前,北京電信10KV系統中高壓開關柜的配置主要有兩大類:即固定式高壓開關柜和手車式高壓開關柜。關于固定式高壓開關柜是我國解放初期自前蘇聯引進的老產品,柜型高大、有足夠的安全距離、但防護等級低、元器件陳舊、防電擊水平較低;而手車式高壓開關柜是近年來引進國外技術,消化吸收研制的換代產品,體積縮小、防護等級大大提高、元器件的選用比較先進、防電擊水平較高。其主要特點可歸納為:它有四室(手車室、電纜室、母線室和繼電儀表室)、七車(斷路器手車、隔離手車、接地手車、所用變壓器手車、電壓互感器手車、電壓互感器和避雷器手車、避雷器和電容器手車)、三個位置(工作位置、試驗位置和拖出柜外檢修位置)和兩個鎖定(工作位置的鎖定和試驗位置的鎖定)。它用高壓一次隔離觸頭替代了高壓隔離開關、用接地開關替代了臨時接地線等。對于系統的運行安全提供了很好的條件。關于配電變壓器安裝于主機樓時,一般均采用了防火等級較高的干式變壓器,筆者曾率先嘗試采用了D/Yo-11接線組別的干式變壓器(傳統采用Y/Yo-12接線組別),其一次接成了D形接線,為電信部門產生的大量高次諧波提供了通路,這樣就較為有效的防止了我們電信部門的用電對系統造成的諧波污染(目前電業部門正在諧波管理方面考慮采取必要的經濟措施);同時,采用了這種接線組別,使得繼電保護的靈敏性有所提高。按照IEC及新的國家標準GB50054-96的要求,應逐步推廣采用D/Yo-11接線組別的配電變壓器。

3.關于10KV一相接地保護方式的探討

10KV中性點不接地系統中發生一相接地時,按照傳統方式是采用三相五鐵心柱的JSJW-10型電壓互感器作為絕緣監視。但是,當我們選用了手車式高壓開關柜后,再繼續安裝JSJW-10已經比較困難,又由于10KV系統中的一次方案有了變化、原有的絕緣監視方案又存在著缺陷,因此較為可取的辦法是采用零序電流保護裝置。

篇6

關鍵詞:110KV變電所10KV開關柜合主變差動保護故障實例

1110KV變電所10KV開關柜合

1.1基本情況

我局110KV變電所原有主變一臺,容量為2萬千伏安。35KV三回出線,10KV八回出線。其中10KV配電系統采用的開關型號為SN10-10II型少油斷路器,配CD10型直流電磁操動機構。10KV線路配置了電流速斷保護和過電流保護,10KV10#開關對城關大部分地區的負荷供電。

1.2現象

10KV10#開關,自89年投運后,運行情況較好。隨著城關地區的負荷迅速上升,配變的容量不斷增大。至九四年初,該開關出現拒合現象,即該開關在合閘時,發出連續的跳合聲響,而后開關有時能合上,有時不能合上。運行人員開出“開關跳躍”的缺陷通知單,局領導要求生技部門組織人員進行消缺。

1.3原因分析

該該臺開關出現的現象,對其定性分析如下:根據缺陷通知單的內容“開關跳躍”,對10KV10#開關的控制和保護回路進行了測試和檢查,排除了“開關跳躍”的可能。若開關存在跳躍,首選線路存在永久性相間短路故障,再則控制開關的接點焊死或控制開關在合閘位置卡死,不能復位。這兩個條件都滿足的情況下“開關跳躍”才會出現。我們通過分析,這兩個條件都不具備,幫排除“開關跳躍”的可能性。再次對該開關進行試驗和檢查,沒有發現異常,繼電保護人員再次對開關的控制和保護回路進行檢查,也沒有發現問題。但該開關在恢復運行時,拒合現象仍然存在。

通過仔細分析現場情況,發現該故障可能與保護裝置動作有關。因為在開關拒合時,發現過流信號掉牌,但運行人員認為掉牌是因為開關柜(GG-1A)振動較大引起的(以前發現過類似現象)。為此,繼保人員重新檢查控制和保護回路,終于發現了10#開關的過流保護沒有時限。過電流保護時間繼電器的延時閉合常開接點沒有接入回路,而把瞬動常開接點接入了回路。正、誤電路如下圖1、2所示。

把時間繼電器接點改接后,開關恢復運行,一切正常,拒合現象消失。

開關雖然恢復了運行,但造成開關拒合的原因是什么呢?我們分析認為應該是開關合閘時的沖擊電流。在該臺開關剛投入運行時,雖然過電流保護回路接線錯誤,但由于該線路較短、負荷較小,合閘時的沖擊電流啟動不了過電流保護裝置。但當城關地區的負荷不斷增加,配變容量不斷增大,開關合閘時的沖擊電流也隨之增大,當該電流增至能啟動過流保護裝置時,開關在合閘時保護動作,將開關跳開,出現開關拒合。但隨著運行方式的改變,使合閘沖擊電流減小,開關又能合上閘。當我們把回路改接后,定值雖然不能完全躲過合閘時的沖擊電流,但從時限上,保護裝置完全可以躲過該沖擊電流。

1.4吸取的教訓

10KV10#開關的拒合現象,幾經努力,終于得到解決,同時也從中得到深刻的教訓。

1.4.1運行人員素質需進一步提高,加強對問題的分析判斷能力,要做到匯報準確。

1.4.2安裝驗收把關要嚴。

1.4.3繼保人員在對裝置作整組試驗時方法不當,數次試驗都沒有發現異常,工作不到位。

2城關110KV變電所主變差動保護誤動

2.1基本情況

城關110KV變電所是岳西縣的樞紐變電所。一期工程上20000KVA主變一臺,電壓等級為110KV/35KV/10KV,35KV側為單母線接線方式。10KV側為單母線分段帶旁路接線方式。為滿足負荷增長的需要,于99年第四季度上二期工程,增加一臺主變,其容易為10000KVA。主變保護采用南京自動化設備總廠生產的CST231型微機保護,35KV側單獨供一條線路運行。

2.2事故現象及原因分析

二期工程竣工后,于2000年5月29日投入主變試運行。合上主變110KV側開關,主變空載運行二十四小時無任何異常現象,再投入35KV側開關帶線路運行時,主變差動保護運作。微機打印的事故報告顯示,B相差動保護出口,動作值0.81,大于整定值0.8。

根據運行記錄,主變差動保護動作時,其保護范圍內未出現任何異常,經初步分析為CT極性接錯。經檢查證實極性接反,改正后再次投入主變110KV側,35KV側開關試運行(10KV側不投)。當35KV側所帶負荷增加到約620KW時,差動保護發出差流越限告警信號。該信號是延時5秒發出,表明回路存在較大不平衡電流,其值已大于0.2A的告警整定值,怎么會出現如此大的不平衡電流?在差動保護范圍內進行仔細測量和檢查,均未發現任何問題。因此,對不平衡電流進行計算,如圖3所示:

當P為額定負荷時,計算差動不平衡電流Ibp=0.01A<<0.2A。現當P=620KW時,關勞動能力不平衡電流Ibp就達到0.2A,判斷可能是有關參數出錯。為此,重新檢查主變保護的定值輸入情況,發現35KV側差動平衡系數Kpm=1.39,該值是把35KV側CT變比誤認為是400/5造成的,而35KV側CT實際變比為200/5。更正后,投入主變運行正常。

篇7

1電力繼電保護器的種類簡述

在電力系統運行時,繼電保護自動化機組會采集繼電保護對象的故障信號,比較定值與采集信息,將其傳輸到邏輯模塊中,邏輯模塊在收到信息后,會對信息進行計算與分析,如果計算結果為1,信號就會傳遞到執行模塊之中。

2繼電保護自動化技術的簡述

電力系統作為一個全面、綜合工作的網絡系統,需要專門的保護裝置與專業的技術人員確保其安全工作,而繼電保護的最基本職能就是在電力系統運行不夠穩定或出現一些故障時實施有效的保護措施,將故障帶來的損失降到最低,防止電力系統的進一步惡化。繼電保護自動化技術在實施保護時主要表現在以下幾個方面:

2.1當運行中的電力系統發生故障時,繼電保護就會迅速的做出保護措施,將出現故障的零件或者設備與整個系統隔離,這樣能夠防止故障對其他設備或整個電力系統帶來影響,避免故障的進一步擴散,將故障造成的損失降到最低。

2.2當故障已經發生時,繼電保護裝置就會迅速的發出報警信號,提醒工作人員及時的對設備進行修理。當故障發生較為嚴重時,我們要停止整個電力系統的工作,對其進行一次全面的檢查,對于存在安全隱患的設備或零件盡快的更換,確保整個電力系統安全的運行,為客戶提供高質量的電能。

2.3當設施設備和電力系統發生的故障比較嚴重時,已經威脅到電網的安全或者已經損壞了電力系統的安全設施設備時,繼電保護的自動化裝置就會發揮它的功能和作用,盡量減少損壞或者威脅的程度,盡量避免更大面積的災害發生,繼電保護的自動化裝置,能夠減弱電力系統被破壞的程度和損害電力系統給安全供電造成的影響。

3繼電保護自動化技術在電力系統中的應用分析

繼電保護自動化技術的應用的過程中包括幾個環節,即提出問題、分析問題、安裝調試、投入運行、后續維護、檢修技改,這幾個環節是相互聯系的,在應用繼電保護自動化技術的過程中,必須要把握好以上幾個環節的工作,將其有機結合起來,這樣才能夠保障技術應用的安全性,繼電保護自動化及時在電力系統中的應用包括以下幾個方面:

3.1在地接地保護中的應用

電力系統線路接地方式存在一定的差異,從類型上來看,電力系統能夠分為小電流型接地與大電流型接地兩種類型,前者只負責報警信號的,如果系統中的粗線出現故障,電力系統依然能夠正常運行。大電流型接地在發生故障時,會將電源立即切斷,這可以起到理想的保護作用。

3.2在變壓器中的應用

變壓器是電力系統的有機組成部分,直接影響著電力系統運行的安全性與穩定性,考慮到這一因素,必須要做好變壓器的繼電保護工作。這包括以下幾個內容:第一、接地保護。對于直接接地的變壓器,需要使用零序電流保護法,在接地兩側位置設置保護動作,對不接地變壓器,使用零序電壓保護措施即可。第二、瓦斯保護。在變壓器油箱出現故障的情況下,絕緣材料與油會發生反應,生成有害氣體,因此,瓦斯保護應該是重中之重,在設置好瓦斯保護后,如果油箱出現故障,就能夠在第一時間啟動保護動作,發出報警。第三、短路保護。短路保護有阻抗保護與過電流保護兩個內容,阻抗保護是利用變壓器中阻抗元件原理起到保護作用的方式,在阻抗元件經過一段時間的運行之后,會跳閘,就可以很好的保護變壓器;過電流保護即電流元件經過一段時間的運行之后,也會切斷電源,起到保護作用。

3.3在發電機中的應用

對于電力系統發電機的保護可以采用如下幾種方式:第一、重點保護法。重點保護法應該著重降低發電機失磁故障發生率,為了達到這一目的,需要將中性點保護、電流保護、發電機相位保護結合起來,形成一種縱聯差動模式。如果發電機電流超過標準,可以設置好接地保護裝置,如果發電機定子繞組匝間發生短路,不僅會破壞絕緣層,也會導致發電機出現故障,為此,要在定子繞組中安裝好保護裝置,避免匝間出現短路故障。第二、備用保護法。如果定子繞組負荷偏低,保護裝置就會將電源切斷,報警,有時甚至會出現反時限問題,采用過過電保護法就能夠有效降低此類故障的發生率。此外,在必要的情況下,還需要設置好過電壓保護,避免發電機出現絕緣擊穿問題。

4繼電保護自動化技未來發展趨勢

隨著計算機技術、通信技術以及信息技術的快速發展,電力系統繼電保護裝置面臨著新的發展趨勢,繼電保護裝置計算機化將隨著科學技術的發展向智能化,網絡化,保護、控制、測量和數據通信一體化發展,將會極大的程度提高繼電保護裝置及其技術的自動化水平,以促進電力系統更加的安全可靠的運行,真正實現安全高效的運行,為電力企業和國家創造更大的經濟效益和社會效益。

4.1智能化趨勢

人工智能網絡的神經網絡是運用一種非線性映射的方法,在很多難以列出方程式的復雜的非線性問題上利用神經網絡的方法,解開這些線性問題十分簡單,其中如遺法算法、模糊邏輯和進程規劃等在求解復雜問題的能力上也都有其獨特的方法。因此,將人工智能技術與繼電保護相結合,在一定程度上能加快電力系統的計算速度;另外,人工智能技術在電力系統繼電保護的自動化技術上發揮著重要作用,為繼電保護技術中一些常規方法難以解決問題提出了確實可行的辦法。

4.2計算機化趨勢

繼電保護裝置的計算機化和微機化是電力系統發展的總趨勢,在滿足電力系統要求的前提下,企業應該在考慮經濟效益與社會效益的同時,思考如何提高繼電保護裝置的計算機化和微機化,從而提高繼電保護的可靠性。隨著電力系統對繼電保護的要求不斷提高,除了基本的保護職能外,還需要對故障信息和數據的整理和存儲。強大的通訊能力和快速的數據信息存儲以及保護裝置與其他控制裝置和調度設備的信息需要數據信息和網絡資源聯網,這就要求繼電保護裝置不僅僅是保護還要具備計算機的功能。

5總結

篇8

【關鍵詞】繼電保護現狀發展

一、繼電保護發展現狀

電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。

建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術,建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。

自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上,結束了500kV線路保護完全依靠從國外進口的時代。

在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用,天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。

我國從70年代末即已開始了計算機繼電保護的研究,高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。

二、繼電保護的未來發展

繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。

2.1計算機化

隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。

南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。

電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。

繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。

2.2網絡化

計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。

對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。

對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理,初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。

由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。

2.3保護、控制、測量、數據通信一體化

在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。

目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。

2.4智能化

近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。

三、結束語

建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。

推薦期刊
九九热国产视频精品,免费国产不卡一级αⅴ片,欧美日韩蜜桃在线播放,精品国内自产拍99在线观看
亚洲va在线天堂va欧美va | 欧美伊久线香蕉观新在线 | 中文字幕中文有码在线 | 最新国产精品视频网站 | 精品免费久久久国产 | 亚洲区偷拍区综合区 |