時間:2023-03-20 16:15:29
緒論:在尋找寫作靈感嗎?愛發(fā)表網(wǎng)為您精選了8篇光通信論文,愿這些內(nèi)容能夠啟迪您的思維,激發(fā)您的創(chuàng)作熱情,歡迎您的閱讀與分享!
相干光通信系統(tǒng)中的主要關(guān)鍵技術(shù)
實際中,主要采用以下關(guān)鍵技術(shù)來實現(xiàn)準(zhǔn)確、可靠、高效的相干光通信。
(1)穩(wěn)定頻率技術(shù)。相干光通信中,保持激光器的頻率穩(wěn)定性是一個重要的前提條件。在零差檢測相干光通信系統(tǒng)中,如果激光器的波長或頻率隨著工作條件的變化而產(chǎn)生漂移,那就難以保證本振光信號與接收光信號頻率之間的相對穩(wěn)定。外差檢測相干光通信系統(tǒng)也是如此。為了保證相干光通信系統(tǒng)的正常工作,必須確保光載波和光本振蕩器的頻率穩(wěn)定性很高。
(2)調(diào)制外光技術(shù)。外光調(diào)制是利用某些光電、聲光或磁光特性的外調(diào)制器,完成對光載波的調(diào)制。相干光纖通信系統(tǒng)中對信號光源和本振光源的要求較高,它要求較高的頻率穩(wěn)定度和較窄的光譜線。飛秒激光輸入頻率穩(wěn)定,可調(diào)諧范圍較寬,但所占帶寬相對較小,具有超強的能量和超短的時間,完全符合作為相干光纖通信系統(tǒng)光源的要求。
(3)壓縮頻譜技術(shù)。在相干光通信中,光源的頻譜寬度是一個重要參數(shù)。只有保證光波的頻譜寬度窄,才能使相伴漂移而產(chǎn)生的相位噪聲更小,從而得到大容量、高質(zhì)量的光傳輸。
飛秒激光器
1飛秒激光器的介紹
伴隨光纖通信技術(shù)的飛速發(fā)展,利用超長波長光纖實現(xiàn)超長距離通信,一直是我們不斷追求的重要發(fā)展方向之一。如何獲取并采用超長波長光源,這是超長波長光纖通信系統(tǒng)中首先需要解決的技術(shù)問題。飛秒激光就是這樣一種超長波長光源,將其應(yīng)用于相干光通信的光源,具有相當(dāng)大的優(yōu)勢。飛秒激光是由激光發(fā)展起來的一種新型工具,其功能非常強大。飛秒脈沖短得令你無法想象,現(xiàn)在能夠達(dá)到4飛秒以內(nèi)。1飛秒(fs),即10-15秒,這僅僅是1千萬億分之一秒,所以也稱為超短脈沖激光器。飛秒脈沖采用多級啁啾脈沖放大技術(shù)獲得的最大脈沖峰值功率,可以達(dá)到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量級,飛秒激光的能量強度如此之高,毫不夸張地說,它比將太陽照射到地球上的全部光聚集成繡花針尖般大小后的能量密度還高。
2飛秒激光器的工作原理
飛秒激光器的工作原理。第一,采用衍射光柵將一束飛秒激光分成兩束或更多束,通過一個共焦成像系統(tǒng)讓它相干。第二,將一個鍍有金屬薄膜的透明基體與一個接受基體疊放在一起。第三,利用相干的飛秒激光脈沖輻照透明基體上的金屬薄膜,激光瞬間加熱作用產(chǎn)生的壓力將會驅(qū)動輻照區(qū)的金屬薄膜蒸發(fā)到與它接觸的接受基體上,蒸發(fā)的金屬將迅速重新固化,沉積到接受基體上,這樣在接受基體上就會得到由相干飛秒激光脈沖傳輸?shù)闹芷谖⒔Y(jié)構(gòu)。
3飛秒激光器的應(yīng)用
飛秒激光最直接的應(yīng)用就是作為超短超快光源。應(yīng)用泵浦探測技術(shù)和多種時間光譜分辨技術(shù),作為飛秒固體激光放大器的種子光源。雖說我們能夠使光脈沖寬度愈來愈窄,光脈沖能量愈來愈高,但最令人欣喜的進(jìn)展還是能夠輕易得到飛秒脈沖。飛秒激光的應(yīng)用研究領(lǐng)域大概分為兩種,一種是超快瞬態(tài)現(xiàn)象的應(yīng)用研究,另一種是超強現(xiàn)象的應(yīng)用研究。伴隨激光脈沖寬度的縮短和能量的增加,這兩種研究都得到了深入的發(fā)展。可以看到,飛秒脈沖激光的發(fā)展直接帶動了生物醫(yī)療、材料工程與信息科學(xué)進(jìn)入超微觀超快速的研究領(lǐng)域,并開創(chuàng)了一些如納米技術(shù)、立體三維存貯等全新的研究領(lǐng)域,此外,它還被應(yīng)用于信息的處理、傳輸和存貯方面,擁有廣闊的應(yīng)用前景。
飛秒激光作為相干光通信光源的廣泛應(yīng)用
相干光通信的研究和應(yīng)用均發(fā)展迅速,這對于超長波長(2~10m)光纖通信來說,是非常好的選擇。在超長波段,由瑞利散射引起的光纖固有損耗將進(jìn)一步大幅減少。理論上,在超長波段可以實現(xiàn)光纖越洋跨海無中繼超長距離通信;而實際上,在超長波段,直接探測接收機的各項性能和表現(xiàn)都不盡人意,唯一的選擇,就是相干探測方式。以飛秒激光為光源,以超長波長光纖作為傳輸介質(zhì),利用相干光通信技術(shù)實現(xiàn)無需中繼站的超長距離通信。超長波長光纖通信系統(tǒng)不但解決了普通光通信系統(tǒng)中距離和容量限制問題,而且提高了系統(tǒng)穩(wěn)定可靠性,并使通信成本大幅降低,對跨海洋和沙漠地區(qū)的通信更具有非凡的意義。
考慮到高靈敏度的激光相干通信更適用于遠(yuǎn)距離的通信,這里以GEO軌道為例,綜合考慮文獻(xiàn)[8,12]的參數(shù),以傳輸速率為2Gb/s的2PSK零差系統(tǒng)為例,選定的參數(shù)如表1所示。對信號光束與本振光束的要求按照文獻(xiàn)[7]執(zhí)行。為了更清晰地說明像差對接收系統(tǒng)可靠性的影響,分兩步進(jìn)行討論,首先探討接收系統(tǒng)各種像差各自所產(chǎn)生的影響,然后再探討它們相互是否具有校正補償功能。
不同像差單獨作用時
先來考查傾斜、離焦、彗差及像散這4種像差對系統(tǒng)可靠性的影響。把表1的數(shù)據(jù)代入(13)式,并對傾斜、離焦、彗差及像散的像差進(jìn)行歸一化處理,即令W1x,W20,W31,W22分別除以λ,以此作為自變量,依次把(9)~(12)式代入(13)式進(jìn)行運算,并對所得誤碼率進(jìn)行以10為底的對數(shù)變換,得到圖1和表2所示的像差與誤碼率關(guān)系。
圖1橫坐標(biāo)表示歸一化的像差系數(shù),縱坐標(biāo)是取對數(shù)后的誤碼率。從圖看到,對于星間相干光通信接收系統(tǒng)其可靠性容易受各種像差的影響。從圖1兩坐標(biāo)軸的起點和表2第1列數(shù)據(jù)可以看到,在表1設(shè)定的參數(shù)下,在沒有像差的影響的情況下,系統(tǒng)最小誤碼率接近10-8;當(dāng)有像差時,從圖中4條曲線并比較表格第2~5行的數(shù)據(jù),可以看到,接收系統(tǒng)的誤碼率隨著像差的增加而遞增,其中傾斜像差對接收系統(tǒng)誤碼率的影響最大,離焦和彗差相當(dāng),而像散的影響最小。若以εBER≤10-6為標(biāo)準(zhǔn),系統(tǒng)能承受的最大傾斜像差W1x僅為0.2λ,最大離焦W20及彗差W31大約為0.32λ,最大像散W22不超過0.41λ。可能的原因是:系統(tǒng)一旦有傾斜像差,信號光束將完全偏離焦點,它與本振光束所形成的有效混頻區(qū)域銳減,從而混頻效率急降,使誤碼率快速攀升。離焦像差將使信號光束的聚焦光斑沿光軸在焦點前后變動,從而改變焦點處的光斑質(zhì)量,影響它與本振光斑在焦點處的混頻效果,使誤碼率上升;與傾斜像差導(dǎo)致的混頻面積減少相比,這種信號光束聚焦特性的劣變是溫和的,所以離焦像差對系統(tǒng)可靠性的影響比傾斜像差小。另外,考慮到接收光學(xué)系統(tǒng)已經(jīng)進(jìn)行過高階像差的優(yōu)化設(shè)計,且采取了抗擾動措施,所以彗差與像散的影響將更小,這也從側(cè)面說明優(yōu)化設(shè)計后的系統(tǒng)無需考慮更高階像差的影響。
像差間的相互校正
根據(jù)文獻(xiàn)[7],傾斜像差與彗差之間、離焦與像散之間具有部分校正效應(yīng),接下來將進(jìn)行比較分析。此時把(11)式改寫成(14)式,而(12)式改寫成(15)式。把(14),(15)式分別代入(13)式,并采用歸一化像差系數(shù),令W31/λ和W22/λ分別取:0.00,0.25,0.50,0.75,1.00,得到圖2,3和表3,4所示結(jié)果。
圖2表示傾斜像差與彗差之間的校正效果。以εBER≤10-6為標(biāo)準(zhǔn),當(dāng)傾斜像差W1x/λ=0,從縱坐標(biāo)軸上看,彗差W31/λ=0.50時,系統(tǒng)的誤碼率接近10-4,已超出標(biāo)準(zhǔn)2個數(shù)量級;當(dāng)W31/λ=1.00時,誤碼率更是接近10-2。所以,若對彗差不進(jìn)行校正,隨著其數(shù)值的增大,誤碼率呈指數(shù)增長。但是,從圖2也可看到,對于歸一化的彗差W31/λ,可以通過調(diào)整歸一化的傾斜像差W1x/λ來部分校正,從而降低系統(tǒng)誤碼率,提升系統(tǒng)可靠性。譬如,同樣是W31/λ=0.50,但只要調(diào)整W1x,使W1x/λ大致在-0.34~-0.24之間,則可以維持誤碼率εBER≤10-6。不僅如此,從圖2來看,即便W31/λ=1.00,只要W1x/λ大致在-0.44~-0.66之間,誤碼率依然可以小于等于10-6,而此時若不進(jìn)行校正,誤碼率已接近10-2。因此,當(dāng)W31/λ≤1.00時,為了保證系統(tǒng)誤碼率εBER≤10-6,通過調(diào)整W1x,傾斜像差與彗差之間能實現(xiàn)部分相互校正。
表3給出了通過調(diào)整傾斜來校正彗差而提升系統(tǒng)誤碼性能的效果。觀察第4~7行,單獨看每行時,發(fā)現(xiàn)隨著歸一化傾斜像差系數(shù)-W1x/λ絕對值的遞增,誤碼率會經(jīng)歷變小、穩(wěn)定、再變大的過程,這正是傾斜對彗差校正的體現(xiàn),且對于不同取值的彗差,有相應(yīng)的最佳傾斜調(diào)整參數(shù),譬如當(dāng)W31/λ=0.25時,令-W1x/λ=0.16,系統(tǒng)誤碼率由補償前的10-6.7降低至最小值10-7.7,系統(tǒng)誤碼性能提升一個數(shù)量級;而比較第4、5、6、7行的數(shù)據(jù),可以看到,隨著彗差的增大,傾斜對其校正效果越來越弱。
回顧(8)與(14)式,可以發(fā)現(xiàn),彗差W31ρ3cosθ(其中W31=W131H)與x方向性的傾斜W1xρcosθ具有相似性。對于相同的θ,若令ρ取1,則彗差由W31決定,而傾斜由W1x決定,因此,只要兩者取值相反,便能相互抵消,從而提高混頻效率,降低誤碼率。對于W1yρcosθ有相同的結(jié)論。
圖3和表4表示了離焦與像散的相互校正作用。其變化趨勢與圖2相似,從圖3看到,當(dāng)W22/λ≥0.75后,不管離焦像差W20如何變化,系統(tǒng)的誤碼率不可能滿足εBER≤10-6,與之相比,即便是彗差W31/λ=1.00,通過調(diào)整W1x,依然可以實現(xiàn)誤碼率εBER≤10-6的目標(biāo)。以誤碼率εBER≤10-6為標(biāo)準(zhǔn),經(jīng)計算,此時的W22/λ=0.53。因此,只有當(dāng)W22/λ≤0.53時,才能通過調(diào)整W20對W22進(jìn)行部分校正。
1類平衡探測-正交頻分復(fù)用技術(shù)
類平衡探測-正交頻分復(fù)用技術(shù)(QBD-OFDM)結(jié)合類平衡探測編碼技術(shù)和OFDM技術(shù)[14]。OFDM信號數(shù)據(jù)被分為多個數(shù)據(jù)塊,每個數(shù)據(jù)塊有兩個符號的數(shù)據(jù)。在相同的數(shù)據(jù)塊,第二個符號中的信號是和第一個符號中的信號在運算符號上是相反的。經(jīng)過理論推導(dǎo),發(fā)現(xiàn)二階互調(diào)制失真、直流電流、可以完全消除,而且接收機的靈敏度可以提高3dB,因此可以提高信噪比。我們采用QBD-OFDM技術(shù),實現(xiàn)了可達(dá)到2.1Gb/s實際物理數(shù)據(jù)速率,并使傳輸距離達(dá)到2.5m。圖1為所提出的QBD-OFDM實驗的原理。實驗中,QBD-OFDM信號由任意波形發(fā)生器(AWG)產(chǎn)生,經(jīng)過低通濾波(LPF)、電放大器(EA)和偏置樹(BiasTee)后調(diào)制到紅綠藍(lán)發(fā)光二極管(RGB-LED)不同顏色的芯片上。經(jīng)過自由空間傳輸后,在接收端由棱鏡聚光后,用濾光片將3個波長的光分開,最后采用雪崩光電二極管(APD)探測器接收。然后進(jìn)行后端的均衡與解調(diào)算法處理。結(jié)合波分復(fù)用(WDM)和類平衡探測子載波復(fù)用,很好地利用了多色LED的波分復(fù)用,提供了更多的傳輸信道。利用類平衡探測技術(shù)很好地避免了OFDM提供更多子載波時的峰均功率比(PAPR)限制,有效提升了多色LED傳輸速度,提高了系統(tǒng)誤碼率(BER)性能,同時增加了可見光通信的傳輸距離。圖2給出QBD-OFDM技術(shù)和直接探測光正交頻分復(fù)用(DDO-OFDM)技術(shù)的對比。兩個子信道帶寬為,Sub1:6.25~56.25MHz,Sub2:56.25~106.25MHz。每個子信道對應(yīng)的調(diào)制階數(shù)分別為,紅光:256正交幅度調(diào)制(256QAM)和128正交幅度調(diào)制(128QAM),綠光:128QAM和64QAM,藍(lán)光:128QAM和128QAM。因此,紅光、綠光和藍(lán)光的數(shù)據(jù)速率分別為750Mb/s、650Mb/s和700Mb/s,總數(shù)據(jù)速率達(dá)到2.1Gb/s,實驗距離可以達(dá)到2.5m。在距離為0.5m時,紅綠藍(lán)3色對應(yīng)的Sub1、Sub2兩個子信道的BER提升為25.6dB、31dB、30.3dB、25.8dB、21.8dB和19.3dB。當(dāng)可見光通信系統(tǒng)的通信距離增加時,系統(tǒng)誤碼率會增加,這是因為距離增加導(dǎo)致系統(tǒng)接收到的光信號減弱,系統(tǒng)信噪比降低,誤碼率增加。繼續(xù)增加距離會使BER超過前向糾錯碼的門限,為使距離增加,就要使系統(tǒng)的傳輸速率降低。藍(lán)光LED采用QBD-OFDM和DDO-OFDM的對應(yīng)的Sub1、Sub2兩個子信道的星座圖如圖2(d)的(i)、(ii)、(iii)和(iv)所示。
2無載波幅相調(diào)制技術(shù)
無載波幅度相位調(diào)制(CAP)是正交幅度調(diào)制的一個變種多階編碼調(diào)制技術(shù),可以使用模擬或數(shù)字濾波器,實現(xiàn)靈活的子帶劃分和高階調(diào)制,減少了計算的復(fù)雜性和系統(tǒng)結(jié)構(gòu),在數(shù)字用戶線路有著廣泛的應(yīng)用。無載波幅相調(diào)制信號可以表示如下:s(t)=a(t)?fI(t)-b(t)?fQ(t)(1)這里a(t)和b(t)是I路和Q路的原始比特序列經(jīng)過編碼和上采樣之后的信號。fI(t)=g(t)cos(2πf)ct和fQ(t)=g(t)sin(2πf)ct是對應(yīng)的整形濾波器的時域函數(shù),它們形成一對希爾伯特變換對。假設(shè)傳輸信道是理想的,在接收機端兩個匹配濾波器的輸出可以表示如下:這里mI(t)=fI(-t)和mQ(t)=fQ(-t)是對應(yīng)的匹配濾波器的脈沖響應(yīng)。利用對應(yīng)的匹配濾波器在接收端就可以解調(diào)出原始信號。我們采用了無載波幅相調(diào)制技術(shù),結(jié)合先進(jìn)預(yù)均衡與后均衡算,后均衡算法采用改進(jìn)級聯(lián)多模算法(CMMA),實現(xiàn)了1.35Gb/s可見光傳輸系統(tǒng)實驗[15]。實驗原理圖和實驗裝置圖如圖3所示。圖4(a)到圖4(c)為采用改進(jìn)CMMA均衡算法所測得BER和距離的關(guān)系。實驗中,每個波長上采用頻分復(fù)用技術(shù),將不同用戶的信號分別調(diào)制到3個子載波上,每個子載波調(diào)制信號帶寬為25MHz,調(diào)制階數(shù)為64QAM,因此每個子載波的傳輸速率為150Mb/s,每個波長的傳輸速率為450Mb/s。在發(fā)射和接收的距離為30cm時,經(jīng)過波分復(fù)用后該系統(tǒng)總的傳輸速率達(dá)到1.35Gb/s。圖4(d)對比了CMMA和改進(jìn)CMMA的性能,改進(jìn)CMMA性能要優(yōu)于CMMA,尤其是在第3個子帶更為明顯。
3頻域均衡單載波調(diào)制技術(shù)
基于頻域均衡的單載波調(diào)制技術(shù)(SC-FDE)是基于單載波的高頻譜效率調(diào)制技術(shù),該調(diào)制技術(shù)頻譜效率和OFDM一致,復(fù)雜度一致。可見光通信系統(tǒng)是一個非線性非常嚴(yán)重的系統(tǒng),OFDM存在PAPR的缺點,高PAPR對于可見光系統(tǒng)是一個非常大的缺點,而SC-FDE相比于OFDM具有一定優(yōu)勢,因為SC-FDE擁有更小的PAPR,其調(diào)制/解調(diào)原理如圖5所示。SC-FDE調(diào)制技術(shù)和OFDM過程基本一致,但SC-FDE技術(shù)把IFFT變換從系統(tǒng)發(fā)射端移到了系統(tǒng)接收端。采用SC-FDE技術(shù),使用RGB-LED波分復(fù)用技術(shù)和高階調(diào)制格式,并在頻域采用預(yù)均衡和后均衡技術(shù),可以在LED3dB帶寬只有10MHz的條件下取得3.25Gb/s的速率[16]。如圖6(a)所示。該速率是在發(fā)射和接收距離小于1cm條件下測得,預(yù)均衡后的帶寬為125MHz,紅光和綠光都采用512QAM,藍(lán)光則采用256QAM。圖6(b)、圖6(c)和圖6(d)分別為紅綠藍(lán)3色BER與距離的關(guān)系,并給出了每種顏色光有無預(yù)均衡的性能對比。
4結(jié)束語
論文摘要:光纖通信不僅可以應(yīng)用在通信的主干線路中,還可以應(yīng)用在電力通信控制系統(tǒng)中,進(jìn)行工業(yè)監(jiān)測、控制,而且在軍事領(lǐng)域的用途也越來越為廣泛。本文探討了光纖通信技術(shù)的主要特征及應(yīng)用。
1.光纖通信技術(shù)
光纖通信是利用光作為信息載體、以光纖作為傳輸?shù)耐ㄐ欧绞健T诠饫w通信系統(tǒng)中,作為載波的光波頻率比電波的頻率高得多,而作為傳輸介質(zhì)的光纖又比同軸電纜或?qū)Рü艿膿p耗低得多,所以說光纖通信的容量要比微波通信大幾十倍。光纖是用玻璃材料構(gòu)造的,它是電氣絕緣體,因而不需要擔(dān)心接地回路,光纖之間的串繞非常小;光波在光纖中傳輸,不會因為光信號泄漏而擔(dān)心傳輸?shù)男畔⒈蝗烁`聽;光纖的芯很細(xì),由多芯組成光纜的直徑也很小,所以用光纜作為傳輸信道,使傳輸系統(tǒng)所占空間小,解決了地下管道擁擠的問題。
光纖通信在技術(shù)功能構(gòu)成上主要分為:(1)信號的發(fā)射;(2)信號的合波;(3)信號的傳輸和放大;(4)信號的分離;(5)信號的接收。
2.光纖通信技術(shù)的特點
(1)頻帶極寬,通信容量大。光纖比銅線或電纜有大得多的傳輸帶寬,光纖通信系統(tǒng)的于光源的調(diào)制特性、調(diào)制方式和光纖的色散特性。對于單波長光纖通信系統(tǒng),由于終端設(shè)備的電子瓶頸效應(yīng)而不能發(fā)揮光纖帶寬大的優(yōu)勢。通常采用各種復(fù)雜技術(shù)來增加傳輸?shù)娜萘?特別是現(xiàn)在的密集波分復(fù)用技術(shù)極大地增加了光纖的傳輸容量。目前,單波長光纖通信系統(tǒng)的傳輸速率一般在2.5Gbps到1OGbps。
(2)損耗低,中繼距離長。目前,商品石英光纖損耗可低于0~20dB/km,這樣的傳輸損耗比其它任何傳輸介質(zhì)的損耗都低;若將來采用非石英系統(tǒng)極低損耗光纖,其理論分析損耗可下降的更低。這意味著通過光纖通信系統(tǒng)可以跨越更大的無中繼距離;對于一個長途傳輸線路,由于中繼站數(shù)目的減少,系統(tǒng)成本和復(fù)雜性可大大降低。
(3)抗電磁干擾能力強。光纖原材料是由石英制成的絕緣體材料,不易被腐蝕,而且絕緣性好。與之相聯(lián)系的一個重要特性是光波導(dǎo)對電磁干擾的免疫力,它不受自然界的雷電干擾、電離層的變化和太陽黑子活動的干擾,也不受人為釋放的電磁干擾,還可用它與高壓輸電線平行架設(shè)或與電力導(dǎo)體復(fù)合構(gòu)成復(fù)合光纜。這一點對于強電領(lǐng)域(如電力傳輸線路和電氣化鐵道)的通信系統(tǒng)特別有利。由于能免除電磁脈沖效應(yīng),光纖傳輸系還特別適合于軍事應(yīng)用。
(4)無串音干擾,保密性好。在電波傳輸?shù)倪^程中,電磁波的泄漏會造成各傳輸通道的串?dāng)_,而容易被竊聽,保密性差。光波在光纖中傳輸,因為光信號被完善地限制在光波導(dǎo)結(jié)構(gòu)中,而任何泄漏的射線都被環(huán)繞光纖的不透明包皮所吸收,即使在轉(zhuǎn)彎處,漏出的光波也十分微弱,即使光纜內(nèi)光纖總數(shù)很多,相鄰信道也不會出現(xiàn)串音干擾,同時在光纜外面,也無法竊聽到光纖中傳輸?shù)男畔ⅰ?/p>
除以上特點之外,還有光纖徑細(xì)、重量輕、柔軟、易于鋪設(shè);光纖的原材料資源豐富,成本低;溫度穩(wěn)定性好、壽命長。由于光纖通信具有以上的獨特優(yōu)點,其不僅可以應(yīng)用在通信的主干線路中,還可以應(yīng)用在電力通信控制系統(tǒng)中,進(jìn)行工業(yè)監(jiān)測、控制,而且在軍事領(lǐng)域的用途也越來越為廣泛。
3.光纖通信技術(shù)在有線電視網(wǎng)絡(luò)中的應(yīng)用
20世紀(jì)90年代以來,我國光通信產(chǎn)業(yè)發(fā)展極其迅速,特別是廣播電視網(wǎng)、電力通信網(wǎng)、電信干線傳輸網(wǎng)等的急速擴展,促使光纖光纜用量劇增。廣電綜合信息網(wǎng)規(guī)模的擴大和系統(tǒng)復(fù)雜程度的增加,全網(wǎng)的管理和維護(hù),設(shè)備的故障判定和排除就變得越來越困難。可以采用SDH+光纖或ATM+光纖組成寬帶數(shù)字傳輸系統(tǒng)。該傳輸網(wǎng)可以采用帶有保護(hù)功能的環(huán)網(wǎng)傳輸系統(tǒng),鏈路傳輸系統(tǒng)或者組成各種形式的復(fù)合網(wǎng)絡(luò),可以滿足各種綜合信息傳輸。對于電視節(jié)目的廣播,采用的寬帶傳輸系統(tǒng)可以將主站到地方站的所需數(shù)字,通道設(shè)置成廣播方式,同樣的電視節(jié)目在各地都可以下載,也可以通過網(wǎng)絡(luò)管理平臺控制不同的站下載不同的電視節(jié)目。
有線電視網(wǎng)絡(luò)在全國各地已基本形成,在有線電視網(wǎng)絡(luò)現(xiàn)有的基礎(chǔ)上,比較容易地實現(xiàn)寬帶多媒體傳輸網(wǎng)絡(luò),因此在目前的情況下,不應(yīng)完全廢除現(xiàn)有的有線電視網(wǎng),而用少量的投資來完善和改造它,滿足人們的目前需要。很多地區(qū)的CATV已經(jīng)是光纖傳輸,到用戶端也是同軸電纜進(jìn)入千萬家。但是現(xiàn)在建設(shè)的CATV大多是單向傳輸,上行信號不能在現(xiàn)有的有線電視網(wǎng)中傳送。可以通過電信網(wǎng)PSTN中語音通道或數(shù)據(jù)通道形成上行信號的傳送,也可以通過語音接入系統(tǒng)來完成。將電話接到各用戶,這樣各用戶間即可以打電話,也可以利用廣電自己的綜合信息網(wǎng)中的寬帶傳輸系統(tǒng)構(gòu)成廣電網(wǎng)中自己的上行信號的傳送,組成了雙向應(yīng)用的Internet網(wǎng)。
現(xiàn)在光通信網(wǎng)絡(luò)的容量雖然已經(jīng)很大,但還有許多應(yīng)用能力在閑置,今后隨著社會經(jīng)濟(jì)的不斷發(fā)展,作為經(jīng)濟(jì)發(fā)展先導(dǎo)的信息需求也必然不斷增長,一定會超過現(xiàn)有網(wǎng)絡(luò)能力,推動通信網(wǎng)絡(luò)的繼續(xù)發(fā)展。因此,光纖通信技術(shù)在應(yīng)用需求的推動下,一定不斷會有新的發(fā)展。
參考文獻(xiàn):
[1]王磊,裴麗.光纖通信的發(fā)展現(xiàn)狀和未來[J].中國科技信息,2006,(4)
[2]何淑貞,王曉梅.光通信技術(shù)的新飛躍[J].網(wǎng)絡(luò)電信,2004,(2)
光纖通信的誕生與發(fā)展是電信史上的一次重要革命。光纖從提出理論到技術(shù)實現(xiàn)和今天的高速光纖通信也不過幾十年的時間。從國外的發(fā)展歷程我們可以看出,20世紀(jì)60年代中期,所研制的最好的光纖損耗在400分貝以上,1966年英國標(biāo)準(zhǔn)電信研究所高錕及Hockham從理論上預(yù)言光纖損耗可降至20分貝/千米以下,日本于1969年研制出第一根通信用光纖損耗為100分貝/千米,1970年康寧公司(Corning)采用“粉末法”先后獲得了損耗低于20分貝/千米和4分貝/千米的低損耗石英光纖,1974年貝爾實驗室(Bell)采用改進(jìn)的化學(xué)汽相沉積法制出性能優(yōu)于康寧公司的光纖產(chǎn)品。到1979年,摻鍺石英光纖在1.55千米處的損耗已經(jīng)降到0.2分貝/千米,這一數(shù)值已經(jīng)十分接近由Rayleigh散射所決定的石英光纖理論損耗極限。
目前國內(nèi)光纖光纜的生產(chǎn)能力過剩,供大于求。特種光纖如FTTH用光纖仍需進(jìn)口,但總量不大,國內(nèi)生產(chǎn)光纖光纜價格與國際市場沒有差別,成本無法再降,已經(jīng)是零利潤,在國際市場沒有太強競爭力,出口量很小。二十年來的光技術(shù)的兩個主要發(fā)展,WDM和PON,這兩個已經(jīng)相對比較成熟。多業(yè)務(wù)傳輸發(fā)展平臺兩個方面,一方面是更有效承載以太網(wǎng)業(yè)務(wù)、數(shù)據(jù)業(yè)務(wù),另一方面是向業(yè)務(wù)方面發(fā)展。AS0N的現(xiàn)狀是目前的系統(tǒng)只是在設(shè)備中,或是在網(wǎng)絡(luò)中實現(xiàn)了一些功能,但是一些核心作用還沒有達(dá)到。
二、光纖通信技術(shù)的趨勢及展望
目前在光通信領(lǐng)域有幾個發(fā)展熱點即超高速傳輸系統(tǒng)、超大容量WDM系統(tǒng)、光傳送聯(lián)網(wǎng)技術(shù)、新一代的光纖、IPoverOptical以及光接入網(wǎng)技術(shù)。
(一)向超高速系統(tǒng)的發(fā)展
目前10Gbps系統(tǒng)已開始大批量裝備網(wǎng)絡(luò),主要在北美,在歐洲、日本和澳大利亞也已開始大量應(yīng)用。但是,10Gbps系統(tǒng)對于光纜極化模色散比較敏感,而已經(jīng)鋪設(shè)的光纜并不一定都能滿足開通和使用10Gbps系統(tǒng)的要求,需要實際測試,驗證合格后才能安裝開通。它的比較現(xiàn)實的出路是轉(zhuǎn)向光的復(fù)用方式。光復(fù)用方式有很多種,但目前只有波分復(fù)用(WDM)方式進(jìn)入了大規(guī)模商用階段,而其它方式尚處于試驗研究階段。
(二)向超大容量WDM系統(tǒng)的演進(jìn)
采用電的時分復(fù)用系統(tǒng)的擴容潛力已盡,然而光纖的200nm可用帶寬資源僅僅利用率低于1%,還有99%的資源尚待發(fā)掘。如果將多個發(fā)送波長適當(dāng)錯開的光源信號同時在一級光纖上傳送,則可大大增加光纖的信息傳輸容量,這就是波分復(fù)用(WDM)的基本思路。基于WDM應(yīng)用的巨大好處及近幾年來技術(shù)上的重大突破和市場的驅(qū)動,波分復(fù)用系統(tǒng)發(fā)展十分迅速。目前全球?qū)嶋H鋪設(shè)的WDM系統(tǒng)已超過3000個,而實用化系統(tǒng)的最大容量已達(dá)320Gbps(2×16×10Gbps),美國朗訊公司已宣布將推出80個波長的WDM系統(tǒng),其總?cè)萘靠蛇_(dá)200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。實驗室的最高水平則已達(dá)到2.6Tbps(13×20Gbps)。預(yù)計不久的將來,實用化系統(tǒng)的容量即可達(dá)到1Tbps的水平。
(三)實現(xiàn)光聯(lián)網(wǎng)
上述實用化的波分復(fù)用系統(tǒng)技術(shù)盡管具有巨大的傳輸容量,但基本上是以點到點通信為基礎(chǔ)的系統(tǒng),其靈活性和可靠性還不夠理想。如果在光路上也能實現(xiàn)類似SDH在電路上的分插功能和交叉連接功能的話,無疑將增加新一層的威力。根據(jù)這一基本思路,光光聯(lián)網(wǎng)既可以實現(xiàn)超大容量光網(wǎng)絡(luò)和網(wǎng)絡(luò)擴展性、重構(gòu)性、透明性,又允許網(wǎng)絡(luò)的節(jié)點數(shù)和業(yè)務(wù)量的不斷增長、互連任何系統(tǒng)和不同制式的信號。
由于光聯(lián)網(wǎng)具有潛在的巨大優(yōu)勢,美歐日等發(fā)達(dá)國家投入了大量的人力、物力和財力進(jìn)行預(yù)研,特別是美國國防部預(yù)研局(DARPA)資助了一系列光聯(lián)網(wǎng)項目。光聯(lián)網(wǎng)已經(jīng)成為繼SDH電聯(lián)網(wǎng)以后的又一新的光通信發(fā)展。建設(shè)一個最大透明的、高度靈活的和超大容量的國家骨干光網(wǎng)絡(luò),不僅可以為未來的國家信息基礎(chǔ)設(shè)施(NJJ)奠定一個堅實的物理基礎(chǔ),而且也對我國下一世紀(jì)的信息產(chǎn)業(yè)和國民經(jīng)濟(jì)的騰飛以及國家的安全有極其重要的戰(zhàn)略意義。
(四)開發(fā)新代的光纖
傳統(tǒng)的G.652單模光纖在適應(yīng)上述超高速長距離傳送網(wǎng)絡(luò)的發(fā)展需要方面已暴露出力不從心的態(tài)勢,開發(fā)新型光纖已成為開發(fā)下一代網(wǎng)絡(luò)基礎(chǔ)設(shè)施的重要組成部分。目前,為了適應(yīng)干線網(wǎng)和城域網(wǎng)的不同發(fā)展需要,已出現(xiàn)了兩種不同的新型光纖,即非零色散光(G.655光纖)和無水吸收峰光纖(全波光纖)。其中,全波光纖將是以后開發(fā)的重點,也是現(xiàn)在研究的熱點。從長遠(yuǎn)來看,BPON技術(shù)無可爭議地將是未來寬帶接入技術(shù)的發(fā)展方向,但從當(dāng)前技術(shù)發(fā)展、成本及應(yīng)用需求的實際狀況看,它距離實現(xiàn)廣泛應(yīng)用于電信接入網(wǎng)絡(luò)這一最終目標(biāo)還會有一個較長的發(fā)展過程。
(五)IPoverSDH與IpoverOptical
以lP業(yè)務(wù)為主的數(shù)據(jù)業(yè)務(wù)是當(dāng)前世界信息業(yè)發(fā)展的主要推動力,因而能否有效地支持JP業(yè)務(wù)已成為新技術(shù)能否有長遠(yuǎn)技術(shù)壽命的標(biāo)志。目前,ATM和SDH均能支持lP,分別稱為IPoverATM和IPoverSDH兩者各有千秋。但從長遠(yuǎn)看,當(dāng)IP業(yè)務(wù)量逐漸增加,需要高于2.4吉位每秒的鏈路容量時,則有可能最終會省掉中間的SDH層,IP直接在光路上跑,形成十分簡單統(tǒng)一的IP網(wǎng)結(jié)構(gòu)(IPoverOptical)。三種IP傳送技術(shù)都將在電信網(wǎng)發(fā)展的不同時期和網(wǎng)絡(luò)的不同部分發(fā)揮自己應(yīng)有的歷史作用。但從面向未來的視角看。IPoverOptical將是最具長遠(yuǎn)生命力的技術(shù)。特別是隨著IP業(yè)務(wù)逐漸成為網(wǎng)絡(luò)的主導(dǎo)業(yè)務(wù)后,這種對JP業(yè)務(wù)最理想的傳送技術(shù)將會成為未來網(wǎng)絡(luò)特別是骨干網(wǎng)的主導(dǎo)傳送技術(shù)。
(六)解決全網(wǎng)瓶頸的手段一光接入網(wǎng)
近幾年,網(wǎng)絡(luò)的核心部分發(fā)生了翻天覆地的變化,無論是交換,還是傳輸都己更新了好幾代。不久,網(wǎng)絡(luò)的這一部分將成為全數(shù)字化的、軟件主宰和控制的、高度集成和智能化的網(wǎng)絡(luò),而另一方面,現(xiàn)存的接入網(wǎng)仍然是被雙絞線銅線主宰的(90%以上)、原始落后的模擬系統(tǒng)。兩者在技術(shù)上存在巨大的反差,制約全網(wǎng)的進(jìn)一步發(fā)展。為了能從根本上徹底解決這一問題,必須大力發(fā)展光接入網(wǎng)技術(shù)。因為光接入網(wǎng)有以下幾個優(yōu)點:(1)減少維護(hù)管理費用和故障率;(2)配合本地網(wǎng)絡(luò)結(jié)構(gòu)的調(diào)整,減少節(jié)點,擴大覆蓋;(3)充分利用光纖化所帶來的一系列好處;(4)建設(shè)透明光網(wǎng)絡(luò),迎接多媒體時代。
參考文獻(xiàn):
[1]趙興富,現(xiàn)代光纖通信技術(shù)的發(fā)展與趨勢.電力系統(tǒng)通信[J].2005(11):27-28.
[2]韋樂平,光纖通信技術(shù)的發(fā)展與展望.電信技術(shù)[J].2006(11):13-17.
關(guān)鍵詞:光纖通信技術(shù)優(yōu)勢接入技術(shù)
近年來隨著傳輸技術(shù)和交換技術(shù)的不斷進(jìn)步,核心網(wǎng)已經(jīng)基本實現(xiàn)了光纖化、數(shù)字化和寬帶化。同時,隨著業(yè)務(wù)的迅速增長和多媒體業(yè)務(wù)的日益豐富,使得用戶住宅網(wǎng)的業(yè)務(wù)需求也不只局限于原來的語音業(yè)務(wù),數(shù)據(jù)和多媒體業(yè)務(wù)的需求已經(jīng)成為不可阻擋的趨勢,現(xiàn)有的語音業(yè)務(wù)接入網(wǎng)越來越成為制約信息高速公路建設(shè)的瓶頸,成為發(fā)展寬帶綜合業(yè)務(wù)數(shù)字網(wǎng)的障礙。
一、光纖通信技術(shù)定義
光纖通信是利用光作為信息載體、以光纖作為傳輸?shù)耐ㄐ帕κ健U撐陌偈峦ㄔ诠饫w通信系統(tǒng)中,作為載波的光波頻率比電波的頻率高得多,而作為傳輸介質(zhì)的光纖又比同軸電纜或?qū)Рü艿膿p耗低得多,所以說光纖通信的容量要比微波通信大幾十倍。光纖是用玻璃材料構(gòu)造的,它是電氣絕緣體,因而不需要擔(dān)心接地回路,光纖之間的中繞非常小,光波在光纖中傳輸,不會因為光信號泄漏而擔(dān)心傳輸?shù)男畔⒈蝗烁`聽,光纖的芯很細(xì),由多芯組成光纜的直徑也很小,所以用光纜作為傳輸信道,使傳輸系統(tǒng)所占空間小,解決了地下管道擁擠的問題。
二、光纖通信技術(shù)優(yōu)勢
2.1頻帶極寬,通信容量大光纖比銅線或電纜有大得多的傳輸帶寬,光纖通信系統(tǒng)的于光源的調(diào)制特性、調(diào)制方式和光纖的色散特性。散波長窗口,單模光纖具有幾十GHz?km的寬帶。對于單波長光纖通信系統(tǒng),由于終端設(shè)備的電子瓶頸效應(yīng)而不能發(fā)揮光纖帶寬大的優(yōu)勢。通常采用各種復(fù)雜技術(shù)來增加傳輸?shù)娜萘浚貏e是現(xiàn)在的密集波分復(fù)用技術(shù)極大地增加了光纖的傳輸容量。采用密集波分復(fù)術(shù)可以擴大光纖的傳輸容量至幾倍到幾十倍。目前,單波長光纖通信系統(tǒng)的傳輸速率一般在2.5Gbps到1OGbps,采用密集波分復(fù)術(shù)實現(xiàn)的多波長傳輸系統(tǒng)的傳輸速率已經(jīng)達(dá)到單波長傳輸系統(tǒng)的數(shù)百倍。巨大的帶寬潛力使單模光纖成為寬帶綜合業(yè)務(wù)網(wǎng)的首選介質(zhì)。
2.2損耗低,中繼距離長目前,實用的光纖通信系統(tǒng)使用的光纖多為石英光纖,此類光纖損耗可低于0.20dB/km,這樣的傳輸損耗比其它任何傳輸介質(zhì)的損耗都低,因此,由其組成的光纖通信系統(tǒng)的中繼距離也較其他介質(zhì)構(gòu)成的系統(tǒng)長得多。如果將來采用非石英系統(tǒng)極低損耗光纖,其理論分析損耗可下降的更低。這意味著通過光纖通信系統(tǒng)可以跨越更大的無中繼距離;對于一個長途傳輸線路,由于中繼站數(shù)目的減少,系統(tǒng)成本和復(fù)雜性可大大降低。目前,由石英光纖組成的光纖通信系統(tǒng)最大中繼距離可達(dá)200多km,由非石英系極低損耗光纖組成的通信系至數(shù)公里,這對于降低通信系統(tǒng)的成本、提高可靠性和穩(wěn)定性具有特別重要的意義。
2.3抗電磁干擾能力強我們知道光纖原材料是由石英制成的絕緣體材料,不易被腐蝕,而且絕緣性好。與之相聯(lián)系的一個重要特性是光波導(dǎo)對電磁干擾的免疫力,它不受自然界的雷電干擾、電離層的變化和太陽黑子活動的干擾,也不受人為釋放的電磁干擾,還可用它與高壓輸電線平行架設(shè)或與電力導(dǎo)體復(fù)合構(gòu)成復(fù)合光纜。它是一種非導(dǎo)電的介質(zhì),交變電磁波在其中不會產(chǎn)生感生電動勢,即不會產(chǎn)生與信號無關(guān)的噪聲。這樣,就是把它平行鋪設(shè)到高壓電線和電氣鐵路附近,也不會受到電磁干擾。這一點對于強電領(lǐng)域(如電力傳輸線路和電氣化鐵道)的通信系統(tǒng)特別有利。
2.4光纖徑細(xì)、重量輕、柔軟、易于鋪設(shè)光纖的芯徑很細(xì),約為0.1mm,由多芯光纖組成光纜的直徑也很小,8芯光纜的橫截面直徑約為10mm,而標(biāo)準(zhǔn)同軸電纜為47mm。這樣采用光纜作為傳輸信道,使傳輸系統(tǒng)所占空間小,解決了地下管道擁擠的問題,節(jié)約了地下管道建設(shè)投資。此外,光纖的重量輕,柔韌性好,光纜的重量要比電纜輕得多,在飛機、宇宙飛船和人造衛(wèi)星上使用光纖通信可以減輕飛機、輪船、飛船的重量,顯得更有意義。還有,光纖柔軟可繞,容易成束,能得到直徑小的高密度光纜。
2.5保密性能好對通信系統(tǒng)的重要要求之一是保密性好。然而,隨著科學(xué)技術(shù)的發(fā)展,電通信方式很容易被人竊聽,只要在明線或電纜附近設(shè)置一個特別的接收裝置,就可以獲取明線或電纜中傳送的信息,更不用去說無線通信方式。光纖通信與電通信不同,由于光纖的特殊設(shè)計,光纖中傳送的光波被限制在光纖的纖芯和包層附近傳送,很少會跑到光纖之外。即使在彎曲半徑很小的位置,泄漏功率也是十分微弱的。并且成纜以后光纖在外面包有金屬做的防潮層和橡膠材料的護(hù)套,這些均是不透光的,因此,泄漏到光纜外的光幾乎沒有。更何況長途光纜和中繼光纜一般均埋于地下。所以光纖的保密性能好。此外,由于光纖中的光信號一般不會泄漏,因此電通信中常見的線路之間的串話現(xiàn)象也可忽略。
三、光纖接入技術(shù)
隨著通信業(yè)務(wù)量的不斷增加,業(yè)務(wù)種類也更加豐富,人們不僅需要語音業(yè)務(wù),高速數(shù)據(jù)、高保真音樂、互動視頻等多媒體業(yè)務(wù)也已經(jīng)得到了更多用戶的青睞。光纖接入網(wǎng)可分為有源光網(wǎng)絡(luò)A(ON)和無源光網(wǎng)絡(luò)((PON。)采用SDH技術(shù)、ATM技術(shù)、以太網(wǎng)技術(shù)在光接入網(wǎng)系統(tǒng)中稱為有源光網(wǎng)絡(luò)。若光配線網(wǎng)(ODN全)部由無源器件組成,不包括任何有源節(jié)點,則這種光接入網(wǎng)就是無源光網(wǎng)絡(luò)。
現(xiàn)階段,無源光網(wǎng)絡(luò)P(ON)技術(shù)是實現(xiàn)FT-Tx的主流技術(shù)。典型的PON系統(tǒng)由局側(cè)OLT光(線路終端)、用戶側(cè)ONUO/NT(光網(wǎng)絡(luò)單元)以及ODN-OrgnizationDevelopmentNetwork(光分配網(wǎng)絡(luò))組成。PON技術(shù)可節(jié)省主干光纖資源和網(wǎng)絡(luò)層次,在長距離傳輸條件夏可提供雙向高帶寬能力,接入業(yè)務(wù)種類豐富,運維成本大幅降低,適合于用戶區(qū)域較分散而每一區(qū)域內(nèi)用戶又相對集中的小面積密集用戶地區(qū)。
為實現(xiàn)信息傳輸?shù)母咚倩瑵M足大眾的需求,不僅要有寬帶的主干傳輸網(wǎng)絡(luò),用戶接入部分更是關(guān)鍵,光纖接入網(wǎng)是高速信息流進(jìn)千家萬戶的關(guān)鍵技術(shù)。在光纖寬帶接入中,由于光纖到達(dá)置的不同,有FTB、FTTC,F(xiàn)TTCab和FTTH等不同的應(yīng)用,統(tǒng)稱FTTx。
FTTH(光纖到戶)是光纖寬帶接入的最終方式,它提供全光的接入,因此,可以充分利用光纖的寬帶特性,為用戶提供所需要的不受限制的帶寬,充分滿足寬帶接入的需求。我國從2003年起,在“863”項目的推動下,開始了FTTH的應(yīng)用和推廣工作。迄今已經(jīng)在30多個城市建立了試驗網(wǎng)和試商用網(wǎng),包括居民用戶、企業(yè)用戶、網(wǎng)吧等多種應(yīng)用類型,也包括運營商主導(dǎo)、駐地網(wǎng)運營商主導(dǎo)、企業(yè)主導(dǎo)、房地產(chǎn)開發(fā)商主導(dǎo)和政府主導(dǎo)等多種模式,發(fā)展勢頭良好。不少城市制定了FTTH的技術(shù)標(biāo)準(zhǔn)和建設(shè)標(biāo)準(zhǔn),有的城市還制門了相應(yīng)的優(yōu)惠政策,這此都為FTTH在我國的發(fā)展創(chuàng)造了良好的條件。
在FTTH應(yīng)用中,主要采用兩種技術(shù),即點到點的P2P技術(shù)和點到多點的xPON技術(shù),亦可稱為光纖有源接入技術(shù)和光纖無源接入技術(shù)。P2P技術(shù)主要采用通常所說的MC(媒介轉(zhuǎn)換器)實現(xiàn)用戶和局端的自接連接,它可以為用戶提供高帶寬的接入。目前,國內(nèi)的技術(shù)可以為用戶提供FE或GE的帶寬,對大中型企業(yè)用戶來說,是比較理想的接入方式。
1.1SDH光纖通信在鐵路通信系統(tǒng)中的應(yīng)用
SDH光纖通信在鐵路通信系統(tǒng)里的使用解決了PDH光纖通信使用存在的問題,并在此基礎(chǔ)上有所突破,讓鐵路通信系統(tǒng)更加穩(wěn)定和流暢。借助SDH設(shè)備構(gòu)成的具備自愈保護(hù)作用的環(huán)網(wǎng)形式,能在傳輸媒體主要信號中斷的時候自動利用自愈網(wǎng)及時恢復(fù)正常的通信狀態(tài)。相較于與PDH技術(shù),SDH技術(shù)有四個顯著優(yōu)點:一是網(wǎng)絡(luò)管理能力更強;二是比特率和接口標(biāo)準(zhǔn)均統(tǒng)一,讓各個廠家設(shè)備間的互聯(lián)成為了可能;三是提出“自愈網(wǎng)”這一新理論,能在傳輸媒體主要信號中斷時及時恢復(fù)正常;四是運用字節(jié)復(fù)接技術(shù),簡化網(wǎng)絡(luò)各個支路信號。鑒于SDH光纖通信技術(shù)有諸多優(yōu)點,所以在鐵路通信網(wǎng)發(fā)展規(guī)劃里,已經(jīng)明確提出了要著重發(fā)展基于同步數(shù)字系列(SDH)基礎(chǔ)上的傳送網(wǎng)[2]。就以xx鐵路為例,該鐵路基于新敷設(shè)20芯光纜里的其中4芯光纖基礎(chǔ)上,開設(shè)SDH2.5Gb/s(1+1)光同步傳輸系統(tǒng)為長途傳輸網(wǎng),在鐵路的相應(yīng)經(jīng)過點均設(shè)置了SDH2.5Gb/sADM設(shè)備,并借助622Mb/s光口同接入層傳輸設(shè)備相連,發(fā)揮上聯(lián)和保護(hù)作用。此外,還借助2芯光纖開設(shè)了SDH622Mb/s(1+0)光同步傳輸系統(tǒng),將其作為當(dāng)?shù)氐闹欣^網(wǎng),并在鐵路相應(yīng)經(jīng)過點以及新開設(shè)的各個中間站和線路新設(shè)置了SDH622Mb/s設(shè)備。
1.2DWDM光纖通信在鐵路通信系統(tǒng)中的應(yīng)用
DWDM光纖通信技術(shù)是借助單模光纖寬帶與損耗低的特點,由多個波長構(gòu)成載波,許可各個載波信道能同時在同一條光纖里傳輸,如此一來,在給定信息傳輸容量的情況西夏,就能降低所需光纖的總量。使用DWDM技術(shù),單根光纖能傳輸?shù)淖畲髷?shù)據(jù)流量可以高達(dá)400Gb/s。DWDM技術(shù)最顯著的優(yōu)點就是其協(xié)議與傳輸速度是沒有關(guān)聯(lián)的,以DWDM技術(shù)為基礎(chǔ)的網(wǎng)絡(luò)可以使用IP協(xié)議、以太網(wǎng)協(xié)議、ATM等進(jìn)行數(shù)據(jù)傳輸,每秒處理數(shù)據(jù)流量在100Mb~2.5Gb之間。也就是說,以DWDM技術(shù)為基礎(chǔ)的網(wǎng)絡(luò)能在同一個激光信道上以各種傳輸速度傳輸各種類型的數(shù)據(jù)流量。當(dāng)前,在國內(nèi)鐵路通信網(wǎng)里DWDM技術(shù)得到了廣泛應(yīng)用,其中滬杭-浙贛鐵路干線就是國內(nèi)第一條使用DWDM光纖傳輸系統(tǒng)的鐵路。此外,京九、武廣等鐵路的DWDM光纖傳輸系統(tǒng)也在建設(shè)與使用中。就拿京九鐵路來說,京九鐵路線使用的是具有開放性的DWDM系統(tǒng)和設(shè)備,能兼容各種工作波長以及廠商的SDH設(shè)備。波道數(shù)量為16,波道速率基礎(chǔ)為每秒2.5Gb,借助京九線20芯光纜里的2芯G.652單模光纖,使用單纖單向傳輸?shù)姆绞剑簿褪钦f相同波長在兩個方向上都能多次使用,光接口滿足ITU-TG.692協(xié)議的標(biāo)準(zhǔn)。
2結(jié)語
光纖通信系統(tǒng)主要包括接收、發(fā)射以及基本光纖傳輸系統(tǒng),詳見圖1。二、礦山通信(一)礦山通信的現(xiàn)狀自二十世紀(jì)80年代中期以來,世界各大廠商就推出了多種標(biāo)準(zhǔn)。到目前為止,在50多種國際標(biāo)準(zhǔn)中有十幾種常用的。例如工業(yè)以太網(wǎng)、基金會現(xiàn)場總線(FF)等。現(xiàn)場總線的傳輸介質(zhì)有很多種,主要有視頻監(jiān)控支持信號線、人員定位支持雙絞線、環(huán)境監(jiān)測支持雙絞線、光纜、通信聯(lián)絡(luò)支持無線通信等。這些業(yè)務(wù)都有向以太網(wǎng)兼容發(fā)展的趨勢。例如基于工業(yè)以太網(wǎng)的各種監(jiān)測系統(tǒng),基于WIFI通信的信息傳輸系統(tǒng),其中WIFI的使用范圍和發(fā)展尤為迅速且日益壯大。
二、礦山通信的制約因素
礦山通信企業(yè)的特點主要是設(shè)備更新速度慢、建設(shè)時間長等。由于每個時期的通信設(shè)備都一起運行,所以會有信息孤島現(xiàn)象的問題存在。且其內(nèi)部系統(tǒng)有不少不同來源的信息。例如礦山系統(tǒng)和外部環(huán)境間有信息流動和交換的現(xiàn)象,其中包括礦產(chǎn)品銷售、人力供應(yīng)、電力供應(yīng)等。這類信息相互制約、相互影響。礦山井下施工建設(shè)中,由于井下結(jié)構(gòu)復(fù)雜、空間狹小、接收不到信號等因素,急需先進(jìn)的礦山通信技術(shù),以便在施工過程中能準(zhǔn)確、及時的傳輸信息,為優(yōu)化方案提供參考的依據(jù)。
三、光纖通信與礦山通信系統(tǒng)建設(shè)的實際應(yīng)用
(一)礦區(qū)網(wǎng)絡(luò)連接系統(tǒng)中的應(yīng)用
光纖的高寬帶、低成本等特點能滿足礦山信息傳輸日益增長的需求[2]。國家已經(jīng)制定了光纜使用的相關(guān)標(biāo)準(zhǔn),很多礦山企業(yè)也投入生產(chǎn)使用。目前一些普通光纜線、架空地線復(fù)合光纜以及阻燃光纜等都被礦山企業(yè)利用,以連接各礦山建筑設(shè)施和采礦點。這類光纜的使用大大提高了施工的便捷性和線路的穩(wěn)定性,同時還能有效節(jié)約施工建設(shè)的成本。因為增加光纖芯數(shù)并對光纖價格的影響不大,所以在需要光纖芯數(shù)的基礎(chǔ)上再適當(dāng)預(yù)留一點,以免日后需要時能及時提供,以滿足業(yè)務(wù)多樣性的需求。由于光纖通信技術(shù)具有一致性傳輸系統(tǒng)介質(zhì)的特點,所以,現(xiàn)代礦山通信系統(tǒng)的建設(shè)中,可以將光纖以太網(wǎng)作為介質(zhì),其傳輸距離遠(yuǎn),損耗低,承載力強,其接入方法即介質(zhì)轉(zhuǎn)換,光纖兩端都是光貓,從光貓出來有的需要接入光端轉(zhuǎn)換設(shè)備,把光纖帶的光信號轉(zhuǎn)換成網(wǎng)線攜帶的數(shù)字信號,有些光貓集成的轉(zhuǎn)換功能,可以直接轉(zhuǎn)換輸出數(shù)字信號。利用光纖線路構(gòu)建一個礦山骨干通信網(wǎng),再加入無線設(shè)備和該通信網(wǎng)配合使用,為礦區(qū)提供無線設(shè)備或有線光纜的雙重信息傳輸和接收口。圖2礦業(yè)光纖以太網(wǎng)結(jié)構(gòu)模型例如,某礦業(yè)根據(jù)礦區(qū)的實際情況,經(jīng)過建設(shè)和相關(guān)系統(tǒng)的整合,建立了光纖以太網(wǎng),該組網(wǎng)可以全面覆蓋整個礦區(qū)的建筑。其中工業(yè)環(huán)網(wǎng)的整個線路連接選用變電所、兩個大車間以及辦公樓,礦區(qū)的地表到井下被全部覆蓋;其分支線路覆蓋了所有生活區(qū)域。光纜可以傳輸人員定位、電力調(diào)度、視頻監(jiān)測、環(huán)境監(jiān)測、有線電視等業(yè)務(wù)數(shù)據(jù),實現(xiàn)一條光纜線的多種業(yè)務(wù)同時使用,既節(jié)約施工費用又節(jié)約工程建設(shè)的成本。關(guān)于該礦山企業(yè)的光纖以太網(wǎng)的構(gòu)建結(jié)構(gòu)見圖2。將光纖通信技術(shù)運用到礦山企業(yè)工程中,建設(shè)完整的光纖骨干網(wǎng),為各種業(yè)務(wù)傳輸信息數(shù)據(jù),以解決數(shù)據(jù)傳輸過程中的鏈路問題。
(二)礦區(qū)電力中的應(yīng)用
當(dāng)前,礦山電力系統(tǒng)中很多自動化設(shè)備只應(yīng)用于漏電保護(hù)、防爆開關(guān)和配電網(wǎng)等相關(guān)功能,它們之間沒有互相連接的網(wǎng)絡(luò)系統(tǒng),都是單獨運行的狀態(tài)。礦井復(fù)雜的內(nèi)部結(jié)構(gòu)對供電系統(tǒng)的工程量提出更高要求,配電供電服務(wù)系統(tǒng)以及變電所建設(shè)的主要目的是保障開挖采掘運輸?shù)倪^程是暢通的。但在實際井下挖掘作業(yè)時,由于井下復(fù)雜的地質(zhì)條件,供電系統(tǒng)經(jīng)常會出現(xiàn)故障,一旦失去電力服務(wù),井下的挖掘工作就沒有辦法進(jìn)行,這將嚴(yán)重影響施工進(jìn)度,從而降低礦井開采的生產(chǎn)量。利用特種光纖技術(shù)能有效改善井下的供電現(xiàn)狀,在礦山供電系統(tǒng)中應(yīng)用復(fù)合電線可以為井下施工的機械設(shè)備提供源源不斷的穩(wěn)定電力,保證這些設(shè)備的正常操作和運行,利用光纖技術(shù)建立完整的網(wǎng)絡(luò)系統(tǒng),合理使用和分配電力資源,確保礦山施工區(qū)域供電的穩(wěn)定性。同時,還可以在一定程度上節(jié)省建設(shè)供電系統(tǒng)的成本,在電力系統(tǒng)運行的過程中,也能有效縮減成本,從而有效提高礦山企業(yè)工程建設(shè)的整體經(jīng)濟(jì)效益。在完成網(wǎng)絡(luò)系統(tǒng)的建設(shè)基礎(chǔ)上,再采用以太網(wǎng)絡(luò)技術(shù),構(gòu)建更加完善的網(wǎng)絡(luò)監(jiān)測系統(tǒng)。除此之外,光纖技術(shù)還可以結(jié)合多媒體顯像技術(shù),對井內(nèi)的實際運行狀況進(jìn)行實時監(jiān)控,在很大程度上提高了礦井開采的工作效率。工作人員通過監(jiān)測系統(tǒng)可以充分掌握礦井內(nèi)部的實際施工情況。如果井下有設(shè)備故障等問題,監(jiān)測系統(tǒng)可以及時準(zhǔn)確地反映故障的實際情況和具置,并第一時間切斷故障發(fā)生的局部電源,同時發(fā)出警報,提示工作人員,以便在第一時間實施具體可行的解決措施,并在最快時間內(nèi)恢復(fù)井內(nèi)供電,將故障帶來的影響和損失降到最低。
四、結(jié)束語