時間:2023-03-16 15:48:54
緒論:在尋找寫作靈感嗎?愛發表網為您精選了8篇封裝工藝論文,愿這些內容能夠啟迪您的思維,激發您的創作熱情,歡迎您的閱讀與分享!
關鍵詞:工藝;自控儀表;電氣;安裝
分類號:TU758.7
計算機、網絡信息化發展提升了各個領域經濟效益,而在集成化、智能化、數字化等方面自控儀表工藝取得前所未有的發展。自控儀表安裝施工程序如下:對施工圖與技術資料進行了解、給予土建預留預埋作業配合、調校儀表單體、鋪設電纜管路、安裝電纜橋架、安裝控制箱盤、鋪設線纜、鋪設導壓管、安裝自控儀表等。
一 、自控儀表安裝工藝
1. 調校儀表單體
儀表到貨后,應核對、檢查設備與裝箱清單上數量、規格、型號是否相符。安裝儀表前,根據說明書要求,合格校驗單體后進行儀表安裝。以出廠使用說明書為依據開展校驗試驗,選用標準儀器的量程、精確度,試驗所用電源、氣標準,連接線路、管路的原理等均需達到標準。試驗工作人員應對試驗方法、試驗項目等內容明確。調校試驗的情況應真實反映在調校試驗記錄中,調試儀表后,應出具試驗報告。按照設備本體與工藝系統圖,將調校合格的儀表清楚標志、完好封裝,以備安裝。
2.鋪設電纜管路
電氣保護管的管口應無銳邊、光滑,內部應無毛刺、清潔,外部應無裂紋及變形。鋪設路徑應按照控制點或測量點至控制盤間的電氣電纜、管道、設備的分布情況合理進行選擇。應按照電纜的安裝位置、型號、規格等來確定保護管的支架位置、鋪設位置、材質以及管徑。保護管彎曲位置不應有裂縫或凹坑,其彎曲半徑應超過管外徑的六倍,彎曲角度應小于90度。
3.安裝電纜橋架
根據現場實際情況,按照各系統儀表設計更改圖或施工圖,應預先規劃電纜橋架路徑,以防止管道、工藝設備等發生沖突。測量路徑,按施工設計安裝高度以及美觀整齊、橫平豎直、固定牢固等原則制作并安裝吊架、托臂、支架。電纜橋架的組對應按分段的原則,平直連接,分段吊裝定位,橋架之間應由跨接保護接地,同時連接接地網。
4.安裝導壓管
選擇管子及附件材料時,應與設計標準相符,為便于檢查及清理管線,附件及管子的連接應方便拆裝。應以1:10至1:15的比例確保儀表管路坡度。并確保傾斜處氣體凝結水的排出。安裝管子時,還需對管道沉降物、冷凝水的排放進行考慮。為避免測量精度受管內液體溫度變化的影響,其它高溫管路應與測量液位管路保持一定距離。測量液位管路。應將排氣閥安設于液體管路中;將集水器或排水閥安裝于管路最低處,以便含濕氣體的排出。全面檢查安裝完成的導壓管系統,如:可拆連接的嚴密性、管道及支架的可靠性與安全性、設置排放口的正確性等等。安裝完畢后,可開展管道系統試壓,此時應將靠近壓力變送器的閥門關閉。試壓完畢后,拆開儀表管路2端閥門接頭,儀表管路內部的吹掃采用壓縮空氣,同時對儀表管的連接進行確認與檢查。
5.安裝自控儀表
(1)安裝壓力表
以盤上安裝為例進行介紹,在表孔內緩慢裝入壓力表,找正后固定,在接頭中放入墊圈,擰緊接頭,注意壓力表與導壓管的連接。
(2)安裝變送器
用SC50鍍鋅鋼管制作差壓變送器與壓力變送器的支架,并將鋼管固定于就近位置,之后再鋼管上安裝差壓變送器與壓力變送器。為便于維護時將外殼揭開、或調零,變送器頂部與調零側須留有一定距離。須將三閥組接于差壓變送器前面,而二次閥門須接在壓力變送器前面。變送器上絲扣螺紋須匹配于與變送器相連接的螺紋。在安裝差壓變送器時,應先對安裝位置進行查找,之后將變送器的支架固定在該位置上,于支架上固定變送器。將毛細管放開,對好法蘭,先將2根螺栓穿上,再將另外的螺栓穿好、擰緊。為使變送器在具有粉塵或腐蝕性氣體的環境中得到保護,還必須試壓、沖洗、吹掃取壓管,之后連接差壓變送器與壓力變送器。變送器的安。
(3)安裝流量儀
在無交直流電場干擾或強烈振動的地方,按照說明書要求控制前后4段的長度。施工工藝管道時,應將變送器發盤置于安裝處,找正、找平后將法蘭盤點焊住,待冷卻,將變送器安裝好。值得注意的是,安裝在立管上時,為使被測介質流進變送器,應遵循垂直的原則。水平安裝電磁流量變送器時,應墊穩變送器,使2電極處于同一水平面。如果工藝管道與變送器電接觸不良,連接須采用金屬導線。安裝變送器時,應將無襯里的金屬管道接于有絕緣襯里的工藝管道之間。為確保法蘭與接地環良好接觸,被測介質與環內邊緣發生接觸,變送器內徑應較接地環內徑略大。變送器流向應一致于被測介質流向。當管道試壓吹掃結束后,可先行拆下變送器,清洗后再裝上。
(4)安裝轉子流量
按照垂直安裝原則安裝轉子流量計,且用支架固定轉子流量計前后管段。如果玻璃管轉子流量計對介質進行測量時具有腐蝕性或溫度超過70攝氏度的情況下,應考慮加裝防護罩。
(5)安裝分析儀表與盤上儀表
分析儀表的安裝必須滿足避免服飾氣體、劇烈的溫度變化、防止高溫、無強磁場干擾、無振動、易于維護操作、干燥、可靠安全、光線充足等安裝條件。單獨安裝預處理裝置的同時,應盡量縮短取樣管線,并盡可能與傳送器貼近。安裝盤上儀表時,應注意其邊緣光滑度,抽出、推進儀表時避免過于松或過于緊。儀表安裝在盤內框架上應方便維護和接線,并且接地良好。須清楚、正確盤上儀表的銘牌、標志牌等。
二、處置施工中常見問題
常見問題與處置方法如下:①未正確顯示差壓、壓力,這是由于變送器選型與安裝位置出現差錯。處置方法:當變送器取壓點較變送器安裝位置低時,進行正遷移;變送器安裝位置低于變送器取壓點時,進行負遷移。②測壓、測溫不標準,這是由于施工未嚴格按照圖紙要求和規范進行,插入的溫度計過淺、或者過于深所致。處置方法:在安裝測壓、測溫部件之前,測壓位置應嚴格按照儀表規范來確定,以管道的50%為基準判定溫度計插入深度,建議測壓位置遠離三通、彎頭、以及閥門處。③測定流量缺乏穩定性,在連接差壓變送器與取壓管時,噴嘴或孔板方向上反,正負錯位所致。處置方法:在連接差壓送變器與取壓管時,應對其正負進行核對、確認后在進行操作。在安裝噴嘴或孔板時,必須在對噴嘴或孔板安裝方向與關內流向進行確定后進行操作。④二次儀表未顯示,連接端子與線頭時,端子被絕緣層壓住,造成閉合回路不通。處置方法:在結束線纜施工后,絕緣測試線纜,并校對標號線纜,端子中插入線纜頭時應防止端子被絕緣層壓住,且插入深度適宜。⑤管內堵塞,施工前未清理干凈取壓管內部。處置方法:進行施工前,應預先用空壓機吹掃取壓管,待清理干凈后,再進行安裝。⑥氣動、電動薄膜調節閥閉、開不到位,出現閉、開超過極限,或者管內滲漏,頂壞閥體、閥桿或者閥芯。處置方法:對行程開關進行合理的調整。
三、結束語
自控儀表工藝及施工中逐漸運用了集成化、智能化、數字化技術,本文對自控儀表的安裝工藝與施工種常見問題進行總結,并針對其問題進行處理。特別在安裝自控儀表一節中,詳細地介紹了壓力表、變送器、流量儀、電子流量、分析儀表與盤上儀表等步驟,最后提出針對性措施。
參考文獻
[1]禹揚,余國平,朱雀,文鵬. 石油化工裝置中自控儀表工程施工流程的質量控制 [期刊論文].電源技術與應用,2012(9).
本文以微電子專業人才培養為例,針對我校微電子專業教學資源庫的建設,從微電子的需要來說明其重要性,通過與企業聯合分析職業崗位的工作內容、工作崗位、工作職業技能來合理開設學校的相關課程,來培養專業性技術人才的學生[1]。
現狀與背景分析
國家的需求。微電子技術都是高科技、高風險、高投入、高利潤的行業,而且是一個國家、地區科技、經濟實力的反映,美國就是以集成電路設計、制造為核心的地區,讓美國擁有了世界上一流的計算機和IT核心技術,為此,中國于1998年下發了《鼓勵軟件產業和集成電路產業發展的若干政策》的18號文件,大力支持、鼓勵我國微電子產業發展。
企業的需求。從2005年8月的西永微電子園的建立,北大方正FPC等十大項目的建設,200億資金的投入。到2015年4月8號,東方重慶8.5代新型半導體顯示器件及系統項目,在重慶兩江新區水土工業開發區舉行產品投產暨客戶交付活動。該項目總投資328億,為重慶近年來最大投資項目。如此浩大的產業發展,必將大量需求各階層微電子技術人才[2]。
高職學院自身的需求。近幾年,高職教育在改革和發展中取得許多可喜的成果。但是專業不對口,學生興趣缺乏,企業抱怨人才不足,應屆畢業生的實踐技能不夠等相關問題也成為我們教學的薄弱環節。基于職業崗位來分析,才能真正讓學生畢業更快的適應工作環境,解決專業不對口問題。
高職學生的需求。高職學生都期望通過學校專業課程學習,找到一份合適的工作。學生也在思考如何將專業知識轉化成專業能力,如何消化書本內容。學生期望能學習在以后的工作崗位更實用的課程內容。因此基于職業崗位分析構建微電子專業課程,能更好的教學,讓學生明確的學習提升自己的能力,同時幫助學生就業,解決專業不對口等問題。
研究內容、目標、要解決的教學問題
研究內容和目標。通過往屆畢業學生的就業情況分析對應的崗位,找出專業不對口,或者就業工作不影響的主要問題。通過修改課程教學模式,提高學生興趣,激發主觀能動性。通過調研會邀請重慶44所,24所,西南集成設計有限公司等從事微電子行業的公司,分析高職學生通過學生什么課程能快速適應崗位,達到合理構建微電子課程來使高職學生具有對應的崗位能力,從而有效地培養微電子人才[3]。
要解決的教學問題。激發學生對課程的興趣,提升主觀能動性;學生不僅掌握對應崗位的理論知識,也要有熟練對應崗位的實際動手能力;調研企業崗位,分析微電子集成電路設計課程的建設;調研全國高職微電子課程開設,合理調整集成電路設計課程。
采取的分析方法
文獻研究法:利用網絡、報刊等媒介,搜集與課堂教學模式相關的專著、論文等文獻資料,掌握課堂教學模式研究,掌握相關理論知識和國內外對課堂教學模式研究現狀。
企業調研法:派成員組去江蘇,上海,成都等微電子發達區域了解微電子產業發展對應的崗位需求。在我校組織的微電子行業專家職業分析研討會,邀請重慶24所、44所、西南集成有限公司、鷹谷光電等行業專家從微電子高職學生崗位需要來分析,構建微電子專業課程建設[4]。
實驗教學法:用微課進行微電子專業課程的建設,利用我校作為西南地區唯一的仿生產工藝線,以及封裝測試線,配套生動形象來表達上課內容。“校企合作,工學結合”,讓學生直接企業頂崗實習,驗證微電子專業課程建設對應崗位的合理性,優化調整。通過微電子相關的職業技能大賽嵌入式比賽等等提升學生興趣,對應的課程建設學習。
微電子專業課程建設
本校通過與微電子多個企業聯合分析,將微電子專業課程分成集成電路制造、集成電路設計、集成電路封裝、集成電路測試、半導體行業設備維護、半導體安全生產管理等相關方向,然后轉為為A、B、C三類課程,由最基礎的理論知識,如計算機使用,英語閱讀,電路分析,工具使用到專業性技能的操作和綜合職業技能的培養。
A類課程轉換分析表提供的職業需求信息為基礎,并依據課程的需要可補充相關理論知識信息,使課程具有理論知識的相對系統性和完整性。如分半導體器件物理,半導體集成電路,工程制圖,電子材料,SMT工藝等基礎課程。
B類課程的目的是培養基本技能。可以通過集成電路版圖設計實訓,集成電路生產工藝實訓,集成電路封裝工藝實訓,集成電路測試實訓,自動化生產線安裝與調試實訓等課程培養學生的基本技能。
C類課程的目的是培養綜合職業能力,也稱為綜合職業能力課程。通過學習集成電路制造工藝,半導體工廠設計與管理,集成電路封裝工藝,半導體工藝設備,集成電路的可靠性等相關課程來培養學生的綜合職業能力,從工藝到測試,電路到自動化的職業系統化培養。
關鍵詞:芯片封裝;引線鍵合;小波;焊點定位
中圖分類號:TP391文獻標識碼:ADOI:10.3969/j.issn.10036199.2017.01.028
1引言
芯片封裝是在引線框架的外接管腳與芯片焊點之間建立可靠的連接,實現芯片的功能[1]。目前常用的芯片封裝技術包括三種方法:引線鍵合、載帶自動焊和倒裝芯片技術[2]。在三種方法中由于引線鍵合技術具有成本低、精度高、可靠性好的優點,因此,90%以上的芯片封裝都采用的是引線鍵合形式。引線鍵合焊點的視覺定位就是首先通過視覺系統獲取芯片和貼片基板的數字圖像,從中提取出芯片和基板的實際中心坐標參數。計算出芯片和基板相對于預定義位置的坐標偏差和角度偏差。通過定位偏差參數實時計算芯片和引線框架焊點的實際坐標位置,實現芯片引線鍵合焊接劈刀定位誤差的在線修正[3]。
芯片的封裝工藝中需要將芯片粘貼在引線框架的貼片基板上,貼片機吸取芯片后將其放在基板上,由于取片和放片時存在誤差,導致芯片在基板上存在位置偏差。這種誤差的出現,在引線鍵合時會導致鍵合劈刀無法準確定位到芯片焊點的焊接位置。這種情況將導致金屬引線的焊球焊接不牢或者定位不準確,導致芯片的可靠性下降甚至失效。為了提高芯片的引線鍵合精度,本文采用構造多尺度小波變換的方法提取芯片和基座的邊緣信息,實時檢測芯片和貼片基板的邊緣;計算芯片和貼片基板邊緣的中心坐標和偏轉角度;為焊點實時定位和焊接劈刀的實時調整定位提供參數。
2基于小波變換的邊緣提取
通過CCD數字相機采集到的芯片圖像經過預處理后,采用基于小波分析的多尺度圖像分析的辦法提取芯片和引線框架的邊緣特征。通常圖像特征局部的不連續稱為“邊緣”。就灰度突變性而言,圖像的邊緣一般分為兩大類,一類是階躍狀邊緣,其特征是邊緣兩邊象素的灰度值有顯著的不同;另一類是屋頂狀邊緣,其特點是它位于灰度值由增加到減小的變化轉折點。在階躍邊緣點,圖像灰度在它兩旁的變化規律是灰度變化曲線的一階導數在該點達到極值,二階導數在該點近旁呈零交叉,即其左右分別為一正一負兩個峰;對于屋頂狀邊緣的邊緣點,其灰度變化曲線的一階導數在該點近旁呈零交叉,二階導數在該點達到極值。
5芯片特征識別與測試
本文在MATLAB軟件平臺上開發芯片引線鍵合焊點的定位檢測程序。首先從數字相機讀取芯片圖片,在采集芯片照片時設置環境光源,使得芯片處于良好的光照環境下。調整數字相機的鏡頭取景范圍,使芯片及其貼片基座盡量處于最大的取景范圍,使芯片圖像有較大的分辨率。采集到數字圖像后,根據數字相機的畸變校正矩陣[9]修正數字圖像誤差;然后通過圖像預處理技術[10]初步消除圖像中的干擾信息;其次采用圖像灰度處理[11]將其轉化為灰度圖像;再采用數字形態學技術消除芯片圖像上的微小孔隙,消除邊緣檢測過程中出現的亢余信息,完成數字圖像預處理過程。
將預處理過的圖像進行多分辨率分析,由邊緣檢測算法得到的邊緣信息保存到鏈表結構中,鏈表的每一行就保存一條邊緣。首先,在鏈表中查找被斷開的邊緣,并將斷開的邊緣重新連接起來,形成完成的邊緣。其次,將拼接起來的邊緣進行平移和旋轉不變性處理,使得圖像特征中的芯片和基板的邊緣特征轉化為具有不變性的封閉曲線。第三,在實時提取到的芯片和基板邊緣曲線進行不變性處理并提取其小波特征后,將模板的小波特征與實時圖像中的邊緣特征參數進行對比,從而在采集到的圖像中識別出芯片和貼片基板的邊緣。最后通過計算邊緣曲線的矩特征參數,計算出芯片和基板對應的偏移參數。
以任意兩幅圖片為例,芯片和貼片基板中心坐標檢測實驗以芯片和基板周邊一定范圍為拍攝區域,如圖1和圖2所示。如前所述,芯片在粘貼在引線框架的貼片基板上時存在貼片誤差,在這兩個隨機選擇的芯片貼片圖像中芯片相對于基板的位置并不固定。這種誤差將導致在引線鍵合時,焊接劈刀無法與芯片和引線框架的焊點精確對準,這種誤差將導致芯片可靠性降低甚至殘片。計算出芯片和貼片基板的位置偏移量之后,可以根據偏移量計算出芯片和引線框架上的焊點位置[12]。此時計算出的焊點坐標是采用像素為單位的坐標參數,通過對數字相機的標定,可以計算出焊點的實際位置參數(單位:mm)。
6結論
芯片粘貼在引線框架后,為解決芯片和基座幾何中心坐標與設備坐標系中理論坐標偏差和軸向偏角實時測量,以及實時修正芯片的鍵合焊點的位置提高引線鍵合質量的問題,文中提出采用基于緊支集雙正交小波的方法實現邊緣提取和邊緣特征識別。通過實驗表明,該算法能快速、準確的將芯片邊緣和貼片基板的邊緣從圖像中識別出來;并根據兩者的中心位置偏差計算出焊點的實際位置,修正參數反饋給鍵合頭驅動系統。這種算法能夠提高引線鍵合工藝中的焊接質量,簡化了特征提取的步驟,縮短了算法的復雜度,提高了算法的精確度。
參考文獻
[1]丁漢, 朱利民, 林忠欽.面向芯片封裝的高加速度運動系統的精確定位和操作[J].自然科學進展, 2003, 13(6): 568-574.
[2]李可為.集成電路芯片封裝技術[M].北京:電子工業出版社,2007:19.
[3]李君蘭.面向IC封裝的計算機視覺定位系統的研究[D].天津大學T士學位論文,2007.
[4]ALPHA K, 彭嘉雄.小波多尺度方法用于邊緣檢測[J].華中科技大學學報:自然科學版, 2001,29(5):74-76.
[5]胡敏, 陳強洪.多尺度分析方法中四種典型小波基的選擇與比較[J].微機發展, 2002,12(3):41-44.
[6]常輝, 胡榮強.基于B樣條小波的圖像邊緣檢測[J].武漢理工大學學報:信息與管理工程版, 2002,24(3):31-33.
[7]劉曙光, 朱少平.B樣條正交小波的構造[J].紡織高校基礎科學學報,2001,14(2):147-153.
[8]張德干, 高光來.通用雙正交小波構造方法的研究[J].內蒙古大學學報:自然科學版, 1999,30(5):662-670.
[9]丁婷婷, 方舟, 劉波,等. 基于機器視覺檢測的攝像機快速標定與誤差分析[J]. 制造業自動化, 2015,37(1):89-91.
[10]李剛, 范瑞霞.一種改進的圖像中值濾波算法[J].北京理工大學學報,2002,22(3):376-378.
[11]吳冰, 秦志遠.自動確定圖像二值化最佳閾值的新方法[J].測繪學院學報,2001,18(4):283-286
關鍵詞: 柔性顯示;組裝;引線鍵合;覆晶;異向導電膠
中圖分類號:TN141 文獻標識碼:B
1 柔性顯示背景分析與發展前景
1.1 背景分析
近半個世紀來,電子信息技術的發展對日常生活的影響有諸多案例,但其中顯示技術的發展帶來的日常生活的變革是最顯而易見的。
從首臺基于動態散射模式的液晶顯示器(liquid crystal display,LCD)(約為上世紀70年代),到目前LCD電視的普及、3D電視的熱潮,顯示技術的發展顛覆了我們對傳統陰極射線管(cathode ray tube,CRT)顯示器的認知。2012年1~5月,液晶電視銷售額為1,331.9萬臺,占彩電銷售總額(1,470萬臺)的90.6%(數據來源:視像協會與AVC),可以毫不夸張地說,目前已經是液晶電視的天下。與傳統的CRT顯示技術相對比,液晶顯示技術的顯著優點已廣為人知,不用贅述。
隨著電子技術應用領域的不斷擴展,電子產品已經逐步成為日常生活的必須品,而將更多顯示元素引入家庭和個人環境是未來顯示技術的發展趨勢,目前基于此類的研究正在逐步進行(如飛利浦、索尼、通用已經開始相關技術的研發)。但是剛性、矩形、基于玻璃基板的顯示器件已經顯示出不能滿足設計者對外形的需求,設計人員更趨向于選擇一種可彎曲、可折疊,甚至可以卷曲的顯示器件。
與此同時,對產品品質的要求不斷提升,電子產品被要求能承受更多次的“隨機跌落試驗”。而實驗證明基于剛性玻璃基板的顯示器件在試驗中極易損壞,所以在引入全新設計理念的過程中,具有輕薄、不易碎、非矩形等特性的“概念產品”被普遍認為“具有不一般的對市場的高度適應性”。
在產品外形方面,與傳統顯示器相比,柔性顯示器具有更結實、更輕薄、樣式新穎的特點,而這些特點對產品設計師和最終用戶都極具吸引力。
在制造商方面,柔性顯示器生產時,可以采用新型印刷或者卷繞式工藝進行生產,運輸成本相對低廉,使得制造商具有進一步降低生產成本的潛力。
在潛在安全性方面,當柔性顯示器破裂時,不會產生可能導致人員受傷的鋒利邊緣,因此相對剛性顯示器而言,柔性顯示器無疑更加安全。
1.2 柔性顯示的發展前景
由于柔性顯示技術具有獨特的技術特點,與現有顯示技術相比具有一定的先進性,所以普遍認為,在某些市場中,柔性顯示具有潛在的替代優勢,同時,柔性顯示技術更具開拓全新應用領域的潛力(如軍方將柔性顯示應用于新式迷彩服,而這個領域傳統剛性顯示器件是很難涉及的)。柔性顯示器是一種具備良好的市場前景的新技術,目前用于生產柔性顯示器的顯示技術有十多種,包括傳統的液晶、有機發光顯示(organic light-emitting diode,OLED)、電致變色、電泳技術等等,據估計全球約有數百家公司正在或即將開始柔性顯示的研發。
可以認為,柔性顯示技術的發展將為顯示技術領域注入革命性的創新動力。
2 現有組裝技術的分析
2.1 組裝技術概述
作為柔性顯示重要部件之一的驅動芯片,如何與柔性顯示器件相連接是一個值得研究的課題。無論何種顯示技術,最終的顯示畫面依賴于驅動芯片給顯示介質(例如液晶,發光二極管等)提供其所需的信號(電壓信號或電流信號)。已有的芯片組裝和封裝方式有很多種成熟的方案,但在柔性顯示器芯片組裝時,最主要考慮的因素有以下幾點:
(1)組裝制程中的壓力和溫度;
(2)組裝方式的可靠度(包括物理連接可靠度和電性能的可靠度);
(3)組裝中能達到的最小管腳距離(Pin pitch)和最高管腳數量。
就目前主流的芯片與目標介質的組裝技術宏觀上可以分為如下4類(由于TFT-LCD的驅動芯片與目標介質組裝技術比較特殊,所以單獨歸為一類):
第一類,微電子封裝技術,是指將晶圓(Wafer)切割后的Chip做成一種標準的封裝形式的技術。
第二類,微電子表面組裝技術(Surface Mount Technology,簡稱SMTc),是指將封裝后的芯片(IC)成品組裝到目標介質上的技術。
第三類,裸芯片組裝(Bare Chip Assembly),是指將晶圓切割后的Chip直接組裝到目標介質上的技術。
第四類,液晶顯示器(TFT-LCD)領域特有的芯片封裝和組裝技術(COF/TCP封裝和ACF bonding技術)。
下面將逐一介紹各類組裝技術。
2.2 微電子封裝技術
對于電子設備體積、重量、性能的期盼長久以來一直是促進電子技術發展的源動力,而在微電子領域,對芯片面積減小的期望從未停歇(從某種程度上講,芯片的面積決定芯片的成本價格),在莫爾斯定律的效應下,芯片電路的集成度以10個月為單位成倍提高,因此也對高密度的封裝技術不斷提出新的挑戰。
從早期的DIP封裝,到最新的CSP(Chip scale package)封裝,封裝技術水平不斷提高。芯片與封裝的面積比可達1:1.14,已經十分接近1:1的理想值。然而,不論封裝技術如何發展,歸根到底,都是采用某種連接方式把Chip上的接點(Pad)與封裝殼上的管腳(Pin)相連。而封裝的本質就是規避外界負面因素對芯片電路的影響,當然,也為了使芯片易于使用和運輸。
以BGA封裝形式為例,通常的工藝流程如圖3所示。
通常的工藝流程是首先使用充銀環氧粘結劑將Chip粘附于封裝殼上,然后使用金屬線將Chip的接點與封裝殼上相應的管腳連接,然后使用模塑包封或者液態膠灌封,以保護Chip、連接線(Wire bonding)和接點不受外部因素的影響。
另外隨著芯片尺寸的不斷縮小,I/O數量的不斷增加,有時也會使用覆晶方式(Flip Chip)將芯片與封裝殼連接。覆晶方式是采用回焊技術,使芯片和封裝殼的電性連接和物理連接一次性完成,目前也有在裸芯片與目標介質的組裝中使用覆晶方式。
2.3 微電子表面組裝技術
微電子表面組裝技術(surface mount technolo gy,SMTc,又稱表面貼片技術),一般是指用自動化方式將微型化的片式短引腳或無引腳表面組裝器件焊接到目標介質上的一種電子組裝技術。
表面組裝焊接一般采用浸焊或再流焊,插裝元器件多采用浸焊方式。
浸焊一般采用波峰焊技術,它首先將焊錫高溫熔化成液態,然后用外力使其形成類似水波的液態焊錫波,插裝了元器件的印刷電路板以特定角度和浸入深度穿過焊錫波峰,實現浸焊,不需要焊接的地方用鋼網保護。波峰焊最早起源于20世紀50年代,由英國Metal公司首創,是20世紀電子產品組裝技術中工藝最成熟、影響最廣、效率最明顯的技術之一。
表面貼片元器件多使用再流焊技術,它首先在PCB上采用“點涂”方式涂布焊錫膏,然后通過再流焊設備熔化焊錫膏進行焊接。再流焊的方法主要以其加熱方式不同來區別,最早使用的是氣相再流焊,目前在表面組裝工藝中使用最為廣泛的是紅外再流焊,而激光再流焊在大規模生產中暫時無法應用。再流焊中最關鍵的技術是設定再流曲線,再流曲線是保證焊接質量的關鍵,調整獲得一條高質量的再流焊曲線是一件極其重要但是又是極其繁瑣的工作。
2.4 裸芯片組裝技術
裸芯片組裝是指在芯片與目標介質的連接過程中,芯片為原始的晶圓切片形式(Chip),芯片沒有經過預先的封裝而直接與目標介質連接。常用的封裝形式為COB(Chip On Board)形式。
COB方式一般是將Chip先粘貼在目標介質表面,然后采用金屬線鍵接的方式將Chip的接點與目標介質上相應的連接點相連接。完成后Chip、金屬連接線、目標介質上的連接點均用液態膠覆蓋,用以隔離外界污染和保護線路。
裸芯片組裝還有另一種方式,即覆晶方式。覆晶方式是指在Chip接點上預先做出一定高度的引腳,然后使用高溫熔接的方式,使引腳與目標介質相應位置結合,形成電性的連接。與傳統方式相比,覆晶方式不需要使用金屬線進行連接。TFT-LCD驅動芯片常用的TCP/COF封裝使用的即是覆晶方式,但是由于TCP/COF封裝應用領域的特殊性,所以沒有將其歸入裸芯片封裝技術中,而是單獨劃為一類。
2.5 液晶顯示器領域特有的芯片封裝和組裝形式
由于TFT-LCD顯示電路的特殊性,要求驅動芯片提供更多的I/O端口,所以一般情況下TFT-LCD驅動芯片封裝多采用TCP(Tape Carrier Package)方式,或者COF(Chip On Film)方式,芯片與TFT-LCD顯示面板連接多采用ACF(Anisotropic Conductive Film)壓合粘接的方式。
TCP/COF多使用高分子聚合材料(PI ,polyimide)為基材,在基材上采用粘接或者濺鍍(Spatter)方式使之附著或形成銅箔,然后使用蝕刻方式(Etching)在銅箔上制作出所需要的線路、與Chip連接的內引腳(ILB Lead,ILB:Inner Lead Bonding)、與TFT-LCD顯示電路連接的外引腳C(OLB Lead-C,OLB:Outer Lead Bonding)、和外部目標介質(多為PCB板)連接的外引腳P(OLB Lead-P,OLB:Outer Lead Bonding),最后在所有引腳表面附著一層焊錫。
Chip的接點為具有一定高度的金突塊(Au Bump),在與Chip連接(Assembly)時,Chip的接點與TCP/COF上的內引腳通過高溫高壓形成金-錫-銅合金,從而達到電性導通的目的,然后使用液態膠灌封。而在與外部目標介質——TFT-LCD顯示電路連接時,則采用另一種組裝方式——ACF壓合粘接方式(AFC bonding)。
ACF膠結構類似于雙面膠,膠體內富含一定密度的導電粒子(Conductive Particle),導電粒子為球狀,外部為絕緣材料,內部為導電材料。當導電粒子受到外部壓力破裂時,內部導電材料露出,多個破裂的導電粒子連接,可形成電性通路。由于導電粒子破裂時僅受到垂直方向的壓力,加之芯片相鄰接點距離遠大于導電粒子直徑,因此,破裂的導電粒子產生的電性鏈路具有垂直方向導電,水平方向不導電的特性。基于該種特性,ACF膠能使TCP/COF封裝形式的芯片每根外引腳在水平方向上互相絕緣,不致形成短路,而在垂直方向又能與目標介質實現電性導通。由于ACF膠加熱固化后具有很強的粘合力,所以形成電性導通的同時,可以使COF/TCP與目標介質實現物理連接。
TCP/COF封裝形式能支持高達數千的I/O引腳數,因此在TFT-LCD驅動芯片領域得到廣泛的應用。
當然,隨著成本因素的影響日漸增加,另一種方式COG(Chip On Glass)也應運而生。與TCP/COF方式唯一的不同點在于,COG方式不需要PI基材,而是使用ACF壓合粘接方式,直接將Chip與TFT-LCD顯示電路連接,因此會更加節省成本。由于在組裝中芯片是晶圓切片形式,所以COG技術也可以認為是一種裸芯片組裝技術。
3 柔性顯示驅動芯片組裝方安提出
3.1 柔性顯示動芯片組裝方案概述
基于上述介紹,可將芯片與目標介質連接的技術做如下歸類:
第一類為使用金屬線形成電性連接,該種形式多用在常規的芯片和封裝殼組裝、裸芯片COB封裝,可將其歸納為Wire bonding方式。
第二類為芯片和目標介質采用焊接的方式形成電性連接,電子表面組裝技術,裸芯片覆晶方式多使用該種技術形式,可將其歸納為焊接方式。
第三類為TFT-LCD芯片組裝中經常使用的ACF膠壓合連接方式,可將其歸納為ACF bonding方式。
按照上述分類,擬依照不同技術背景,制定不同的芯片與目標介質連接方案,實現驅動芯片與柔性顯示基材的電性連接。
具體方案如下:
方案1:采用Wire bonding方式。
方案2:采用Flip Chip方式。
方案3:采用ACF bonding方式。
需要指出,提出方案時,只討論理論上該方案的可行性,并沒有對該種方案是否具有投入實際生產的可行性做出判斷和論述。
下面將具體討論三種方案的優劣。
3.2 Wire bonding方案
目前Wire bonding技術的具體實現步驟如下:
首先,在晶圓制程后期使用電鍍方式將Chip的連接點做成金突塊;同時,目標介質上的引線(Lead)上也使用鍍金技術使其附著一定厚度的金;然后使用Wire bonding設備將金屬線的一端熔接(采用超聲波或高溫熔接方式)在金突塊上,另一端采用相同的方式熔接在目標介質的Lead上,從而實現電性的導通。由于金具有良好的延展性和良好的導電性,所以,在Wire bonding的過程中,一般使用高純度金線(99.99%)。當然,目前在一些極低端應用中出于成本的考慮,或者在SOC(System On Chip)/SOP(System On Package)封裝中出于保密的需求,會在某些沒有高頻信號和大電流信號的連接管腳上使用鋁線或者銅線進行Wire bonding。
在柔性顯示中使用Wire bonding方案的優勢和劣勢同樣明顯。
首先,金是良好的導體,所以在使用金線鍵接時無需擔心傳輸線RC/RH效應對高頻率信號傳輸造成的影響;同時,也不需過多考慮大電流信號在傳輸過程中由于傳輸線本身電阻造成的電壓降效應和熱效應;其次,采用COB方式可以將芯片直接固定在柔性基材上,省去芯片封裝的成本。
但是,Wire bonding的劣勢也同樣明顯,第一,一般只有在金含量較高的連接點上才能實現金線和Lead/Pad的熔接;第二,Wire Bonding要求目標介質能承受一定壓力且不能有太大形變;第三,Wire Bonding要求目標介質能承受較高溫度;第四,Wire bonding受Wire bonding設備精度的限制,以BGA封裝為例,一般I/O數量為500以內的芯片使用Wire bonding的方式,I/O數量增高,勢必會使單個芯片連接點的尺寸減小,而在I/O數超過500以上時,芯片接點的尺寸會使Wire bonding的成功率大幅下降,而目前的顯示技術恰恰又要求驅動芯片提供更多的I/O數目。
所以,綜合分析上述各種因素,只有在低分辨率金屬材質(如用金屬箔為基材的柔性顯示)的柔性顯示方案中才有可能采用Wire bonding的方式進行芯片和柔性基材的鍵接。因此,作為一種連接技術,Wire bonding技術可以使用在柔性顯示中,但是受到Wire bonding技術自身的制約,它在柔性顯示中的應用會受到不小的限制。
3.3 覆晶方式
覆晶封裝方式的應用十分廣泛,由于覆晶方式可以節省Wire bonding的金線成本,同時芯片與封裝殼的距離更近,可以保證高頻信號具有良好的信號品質,所以被大量使用在對信號品質要求較高的CPU芯片封裝中。傳統封裝形式,芯片的最高工作頻率為2~3GHz,而采用覆晶方式封裝,依照不同的基材,芯片的最高工作頻率可達10~40GHz。
覆晶方式的基本做法是在芯片上沉積錫球,然后采用加溫的方式使得錫球和基板上預先制作的Lead連接,從而實現電性連接。可以這樣認為,覆晶方式是焊接方式的提升。
應用覆晶方式實現柔性基材和驅動芯片的連接有其獨特之處。首先,芯片與柔性基材直接連接,從電性上考慮,該方式由于省略了封裝中的信號傳輸線,所以可以降低芯片管腳上雜訊的干擾,而從成本角度考慮,由于使用裸芯片,該方式可以節約芯片的封裝成本;其次,當芯片晶背(Chip backside)減薄到一定程度后(例如將Chip晶背研磨至13μm時,Chip可以彎折,如圖6所示),Chip會呈現一定程度的柔性,可以在一定程度上實現與顯示基材同步的柔性彎曲。
與Wire bonding方式相比,覆晶方式會有其成本上的先天優勢(不需使用金屬線鍵接),但是覆晶方式也存在一些問題。
覆晶方式中會使用錫球工藝,目前出于綠色環保考慮,微電子表面焊接技術中大量使用無鉛焊錫,無鉛焊錫的熔點約在200℃以上。而在柔性顯示基材的各種方案中,一般具有良好彎折特性的柔性基材多為有機材料,有機柔性基材所要求的制程溫度范圍一般在150℃以內,超過200℃的高溫會對柔性顯示基材造成不可逆的損傷。所以,柔性基材不耐高溫的特性與覆晶技術中需要使用的高溫制程存在一定的矛盾。因此,我們可以推測,覆晶方式在柔性顯示的應用領域會受到其制程溫度的限制。
綜上所述,覆晶方式多應用于柔性電路板(Flexible Print circuit)與芯片連接或者PCB板直接與芯片連接。當然,在能夠耐受高溫的柔性基材上使用覆晶方式實現驅動芯片與柔性基材的連接也極為可行。
3.4 ACF bonding方式
ACF bonding是目前TFT-LCD領域驅動芯片和顯示基板連接最常用的方式,可以將裸芯片或者TCP/COF封裝形式的芯片通過ACF膠與目標介質實現電性連接以及物理連接。
ACF膠連接方式中,ACF膠電阻率變化曲線依賴于導電粒子密度、導電膠厚度、寬度以及導電膠的固化溫度。本文沒有設計具體實驗測量導電膠電阻率的實際曲線,參考相關文獻,導電膠的電阻率約為5×10-4Ω×cm。而基于TFT-LCD Array線路本身帶給驅動芯片的負載遠大于導電膠引入負載的事實,以及驅動芯片輸出信號對電容類負載比電阻類負載更為敏感的特性,可以認為,ACF bonding方式的電阻率的非線性變化不會為顯示電路引入太多負面因素。而在TFT-LCD中大量使用ACF bonding方式的事實更能說明ACF bonding方式的電性能和可靠度是可以接受的。
其次,由于TFT-LCD分辨率的增加,驅動芯片所需的I/O數量也隨之增加。目前主流的Driver IC已可以提供多于1,000 channel的輸出I/O。I/O數量的增加直接導致Chip中接點尺寸和管腳間距(Pitch)的減小,而導電膠中導電粒子的直徑遠小于Chip接點的尺寸,同時,ACF膠能提供的最小Bonding pitch約為10μm,足以滿足驅動芯片的需求。所以在支持I/O數量和小管腳間距方面,ACF bonding具有巨大的優勢。
再次,由于使用金屬箔和薄化玻璃為基材制成的柔性顯示器只能實現有限的“柔性”,所以目前柔性顯示器基材更傾向于使用柔性更佳的有機材料。以PET/PEN為例,其耐溫性與傳統剛性顯示基材相比較差,僅為120℃左右。而傳統的Wire bonding和覆晶方式在組裝過程中需要較高的溫度,故該兩項技術在柔性基材上的應用受到制程溫度的極大限制。而ACF bonding方式的組裝溫度取決于ACF膠本壓過程中使用的ACF膠固化溫度,固化溫度會影響最終成品的物理特性,但對電性的影響較為有限(圖7 所示為ACF膠在不同溫度/壓力下的電阻變化曲線)。
目前,索尼和3M已經有低于150℃的ACF膠出售(約為140℃),而PET/PEN可以短時間耐受150℃的高溫,所以,使用低溫ACF膠連接驅動芯片和顯示基材成為可能。相比上述前兩種方式,ACF bonding方式具有工藝簡單、適用范圍廣的特點,所以就目前而言,ACF bonding應該是柔性顯示驅動芯片與顯示基材連接的最佳方式。
4 結 論
通過比較基于不同技術背景的各種組裝技術方案,綜合考慮柔性顯示基材的物理特性,ACF bonding方式以其在制程溫度上的低溫特性相比其它兩種方案更具優勢。客觀的說,各種組裝技術均有其各自的技術特點和應用領域,而目前柔性顯示基材的物理特性限制了組裝技術的選擇。我們期待新型柔性顯示基材的面世,能給柔性顯示組裝方式帶來更大的選擇空間。
本文僅在理論層面探討用于柔性顯示屏的驅動芯片連接技術實現,未對用于柔性顯示屏的驅動芯片連接技術應用于實際生產中的可行性進行討論。
參考文獻
[1] Nicole Rutherford. Flexible Substrates and Packing for Organic Display and Electronics[J]. Advanced Display, Jan/Feb 2006: 24-29.
[2] 3M. Anisotropic Conductive Film Adhesive 7303. 3M Web.
[3] 3M. Anisotropic Conductive Film 7376-30. 3M Web.
[4] Prof. Jan Vanfleteren (Promotor). Technology Development and Characterization for Interconnecting Driver Electronic Circuitry to Flat-Panel Displays.
[5] Shyh-Ming Chang, Jwo-Huei Jou, et al. Characteristic Study of Anisotropic-conductive Film for Chip-on-Film Packaging. Microelectronics Reliability.
[6] 陳黨輝. 微電子組裝用導電膠長期可靠性的研究[D]. 西安電子科技大學碩士學位論文.
[7] 肖啟明,汪 輝. 焊球植球凸塊工藝的可靠性研究[J].封裝、測試與設備,第35卷,第12期: 1190-1212.
關鍵詞:運梁車;懸掛;銷軸;故障分析;改進
TJ900 type was introduced: the use of the transporting girder vehicle condition, in view of the hydraulic suspension pin failure occur in use process, the bearings appeared repeatedly damaged, seriously affected the production operation. In this paper, the fault analysis and solving method is discussed.
Keywords: transporting girder vehicle, suspension, pin shaft, failure analysis and improvement
中圖分類號:TH133.3文獻標識碼:A文章編號:2095-2104(2013)
TJ900型運梁車可適用于20m、24m、32m整孔混凝土箱梁的運輸與喂梁,能夠把混凝土箱梁從預制場地通過便道,路基,橋梁(包括鋼結構連續梁、鋼混結合連續梁等)運至架梁工位,配合架橋機完成相應的架梁作業。
900型運梁車在設計時,為了液壓懸掛支撐升降、調平;轉向架平衡油缸伸縮選用了GEG80ET--2RS型關節軸承。這種軸承具有有較大的載荷能力和抗沖擊能力,并具有抗腐蝕、耐磨損、自調心、好、結構簡單、體積小、使用壽命長等特點,運梁車投入使用初期效果很好。然而,在使用一年后,該軸承出現了多次損壞,嚴重影響了生產作業。本文就故障的分析及解決方法介紹如下:一 故障現象
運梁車在重載變幅動作時,轉向架系統發出刺耳的嘯叫聲音,平衡臂箱體伴隨抖動和共鳴。經過公司機備部和生產廠家技術人員的共同檢查確認,聲音是從臂架關節軸承處發出。經初步分析,大家認為聲音是關節軸承不良、劑不合適造成干磨而引起的。
二 原因分析
大多數軸承損壞的原因除不良外,還包括承載能力不足超負荷等外界因素。為此從這幾個方面進行了分析: (1)、超負荷:經過了解,該關節軸承部位所承擔的最大荷載沒有超過該軸承額定承載能力。由此可確定,該軸承的損壞與負載過大無關; (2)、非正常沖擊或管理不到位:該運梁車開始使用至軸承損壞過程中,期間沒有出現過可能導致軸承損壞的因素,如非正常沖擊或長時間不予等情況。由此可以確定,并非意外因素或管理不到位造成軸承損壞; (3)、情況:運梁車的系統采用的是干油系統。 (4)、由于施工環境惡劣,經常在路基橋面運轉,灰塵多,液壓懸掛軸承處積累很多灰塵,灰塵或即使肉眼看不見的微小灰塵進入軸承,也會增加軸承的磨損,振動和噪聲。
從軸承損壞現象和系統、進入灰塵情況分析,可確定主要原因是不良、軸承及其周圍環境的不清潔造成的。
三 拆檢分析根據上述分析,我們首先對該軸承進行了人工加油。加油后,震動和噪音消失。繼續實驗一小時左右又再次出現異響。然后對該軸承進行了清洗,清除表面污漬,查看關節軸承表面有無裂紋及碎裂;表面無損傷;然而,在繼續使用后仍然出現震動和噪音,而且沒有減小跡象。為此,我們決定對該軸承進行拆檢分析。
拆檢:(1)、拆檢后發現,關節軸承外圈內壁面在安裝狀態時的下端面有圓弧角為30~40度左右的幾道劃痕;(2)、該軸承的軸下端面(在安裝狀態時)有圓弧角為180度左右的磨損痕跡,沿軸向形成突肩。磨損區寬度與關節軸承內圈寬度相同,突肩最大高度約為3~4mm。根據以上現象和對軸承進行的分析,初步認為造成磨損的原因有三個: 第一、軸承本身有缺陷,造成脂難以到達承壓面;
第二、軸承周圍環境的不清潔即使肉眼看不見的微小灰塵進入軸承,會增加軸承的磨損;
第三、在安裝時軸體孔道內未做徹底清理,留有加工殘留物。根據以上情況,我們采取了如下措施:首先、對軸進行修復和清洗,更換新軸承;其次、要求操作司機作業中每隔一周加一次油,并隨時清潔軸承外的灰塵。軸承沒有出現了干磨異響現象。通過清潔所有關節軸承表面發現液壓懸掛油缸連接平衡臂的軸承已碎裂、出現裂痕;銷軸已嚴重變形、出現銷軸跟著油缸轉動;懸掛油缸已經跨下來,邊緣出現嚴重磨損,有的銷軸轉動甚至把懸掛油缸下支座板嚴重摩損;導致升降點單獨升降時反應不靈敏。通過仔細分析我們發現:(1)、關節軸承內外承壓面幾乎沒有脂,軸承承壓面脂無法進入軸承;(2)、在非承壓面因為軸承兩邊的間隙卻有較多灰塵堵塞。
(3)、軸承部位無法加注脂,使軸承外球面的內圈和內球面的外圈干摩擦。
根據以上情況,我們采取了如下措施:
對懸掛油缸的磨損進行了修復與清洗,對已經磨損的懸掛軸承、懸掛銷軸進行了集中更換,經過分析圖紙我們還發現,該軸承無加注脂口,脂無法進入關節軸承內油槽。從拆檢結果我們斷定,損壞過程如下:因承壓很大、間隙過小,無加注口,脂無法均勻分布到摩擦面,所以首先造成局部干磨,當溫度較高時出現軸承內外圈“抱死”現象。當關節軸承“抱死”后,在滑動過程中造成軸的磨損。當磨損到一定程度時,金屬屑進入摩擦面使磨損加劇,產生劇烈震動和噪音。
四解決、預防措施1措施(1)、 增加油道。 鑒于軸承無法加注油,沒有油口,對液壓油缸耳環內孔增加油槽、油口,即沿耳環內孔表面,在中心點加工出1道寬2mm深2~3mm的油槽與關節軸承外圈油槽相通,使油脂能更加容易地進入承壓面區域。(2)、加大軸徑公差,增大軸的摩擦阻力。將軸重新加工,使其與軸承內圈之間為過盈配合,公差為+1,使油脂難以進入內圈與軸接觸面,增大摩擦阻力;(3)、獨立系統。為關節軸承重新安裝了一個獨立的手動裝置,要求每班次作業中由操作司機進行一次加油。
五預防
預防關節軸承早期損壞的原因:
安裝不當
安裝時使用蠻力,用錘子直接敲擊進口軸承對關節軸承傷害最大;是造成變形的主要原因,安裝不到位,安裝有偏差或未裝到軸承位,造成關節軸承游隙過小。內外圈不處于同一旋轉中心,造成不同心。
建議:選擇適當的或專業的關節軸承安裝工具。
不良
不良是造成關節軸承過早損壞的主要原因之一。原因包括:末及時加注油;油未加注到位;油選型不當;方式不正確等。
建議:選擇正確的油,使用正確的加注方式。
污染
污染也會導致關節軸承過早損傷,污染是指有沙塵、金屬屑等進入關節軸承內部。原因包括使用前過早打開關節軸承的包裝,造成污染;安裝時工作環境不清潔,造成污染;軸承工作環境不清潔,工作介質污染。
建議:在使用前不要拆開關節軸承的包裝;安裝時保持安裝環境的清潔,對要使用的關節軸承進行清洗;增強關節軸承的密封裝置。
疲勞
疲勞破壞是關節軸承常見的損壞方式。疲勞破壞的原因是:關節軸承長期超負荷運行;未及時維修;維修不當等。
建議:選擇適當的關節軸承類型,定期及時更換疲勞關節軸承。 六結語通過采取以上措施,運梁車液壓懸掛關節軸承、銷軸工作正常,轉向架系統工作十分平穩,異響和震動全部消失,沒有出現任何異常。保證了架橋機安全、可靠、高效的進行箱梁架設。
參考文獻
[1]、期刊論文 關節軸承的研究進展 - 機械工程師 - 2008(7)
[2]、期刊論文 國產自關節軸承性能分析 - 科技資訊 - 2010(14)
[3]、期刊論文 大型推力關節軸承結構有限元分析 - 船海工程 - 2004(2)
[4]、期刊論文 關節軸承的工藝改進 - 煤礦機械 - 2000(5)
[5]、期刊論文 工程機械中的大型關節軸承重復使用條件下壽命計算方法 - 黃山學院學報 - 2009, 11(3)
[6]、期刊論文 向心自關節軸承受力分析及當量載荷的確定 - 水力發電 - 2004, 30(5)
[7]、期刊論文 偏斜工況下向心關節軸承應力場分析 - 軸承 - 2010(6)
[8]、期刊論文 關節軸承的邊界模型與壽命分析 - 軸承 - 2005(8)姜韶峰;孫立明;楊成啟;王衛國 關節軸承摩擦磨損及壽命試驗分析1998(03)
關鍵詞:機電設備安裝調試技術驗收
1主要設備安裝
1.1遠程處理機的安裝
樓宇自動控制系統與各可重構處理單元RPU之間的通信是透明的,可利用同一線路不同的RPU完成同一個控制系統。一般而言,建筑電氣設備自動化系統大量監控的是空調機組,所以將RPU布置在機房之中或附近,把空調機組控制系統使用后剩余的輸入輸出接口用于連接附近的水流量計、水位信號、照明控制等。為了日后的發展,RPU的接口要留出20%~30%為宜。
1.2電氣設備自動化系統的布線
在電氣設備自動化系統進行布線時,要注意某些線路需要專門的導線,如通信線路、溫度濕度傳感器線路、水位浮子開關線路、流量計線路等,它們一般需要屏蔽線,或者由制造商提供專門的導線。電源線與信號、控制電纜應分槽、分管敷設;數據顯示通道(DDC)、計算機、網絡控制器、網關等電子設備的工作接地應連在其他弱電工程共用的單獨的接地干線上。智能建筑中安裝有大量的電子設備,這些設備分屬于不同的系統,由于這些設備工作頻率、抗干擾能力和功能等都不相同,對接地的要求也不同。
1.3輸入設備的安裝
輸入設備應安裝在能正確反映其性能的位置,便于調試和維護的地方。不同類型的傳感器應按設計、產品的要求和現場實際情況確定其位置:水管型溫度傳感器、蒸汽壓力傳感器、水流開關、水管流量計不宜安裝在管道焊縫及其邊緣上開孔焊接;風管型濕度傳感器、室內溫度傳感器、風汽壓力傳感器、空氣質量傳感器應避開蒸汽放空口及出風口處。
1.4輸出設備的安裝
風閥箭頭、電動閥門的箭頭應與風門、電動閥門的開閉和水流方向一致;安裝前宜進行模擬動作;電動閥門的口徑與管道口徑不一致時,應采取漸縮管件,但閥門口徑一般不應低于管道口徑二個檔次,并應經計算確定滿足設計要求;電動與電磁調節閥一般安裝在回水管上。
2 機電設備安裝中常見幾種技術問題
2.1螺栓聯接問題。螺栓聯接是機電安裝中最基本的裝配,但操作不當如聯接過緊時,螺栓就可能由于電磁力和機械力的長期作用,出現金屬疲勞,以至于誘發剪切、螺牙滑絲等部件裝配松動的現象,埋下事故隱患。尤其是用于電氣工程傳導電流的螺栓聯接,更應當把握好螺栓、螺母間機械效應與電熱效應的處理,要壓實壓緊,避免因壓接不緊造成接觸電阻增大,由此引發發熱――接觸面氧化――電阻增大等一系列連鎖反應,最后導致聯接處過熱、燒熔,出現接地短路、斷開事故。
2.2振動問題。振動問題原因通常包含3方面:①泵,主要是由于軸承間隙大,轉子與殼體同心度差或轉子和定子磨擦過強烈等因素的影響所造成。②電機,其成因包括軸承間隙大,轉子不平衡或與定子間的氣隙不均勻。③安裝操作,工藝操作參數如偏離額定參數過多,極易造成泵運行穩定性失衡,如出口閥流量控制不穩定導致的震動等,這就要求設備安裝工藝應盡可能地接近于額定參數來操作。
2.3超電流問題。出現此種情況,可能存在三種原因:泵軸承損壞,設備內部有異物;電機過載電流整定偏低,線路電阻偏高等;工藝操作所用介質由于密度大或粘度高超出泵的設計能力。
2.4電氣設備問題:
2.4.1隔離開關安裝操作不當導致動、靜觸頭的接觸壓力與接觸面積不足,致使接觸面出現電熱氧化、電阻增大的情況,最后觸頭燒蝕釀成事故。
2.4.2斷路器弧觸指及觸頭裝配不正確,插入行程、接觸壓力、同期性、分合閘速度達不到要求,將使觸頭過熱、熄弧時間延民,導致絕緣介質分解,壓力驟增,引發斷路器爆炸事故。
2.4.3調壓裝置裝配存在誤差或裝配時落入雜物卡住機構,如不及時加以處理,也會出現不同程度的安全事故。
2.4.4主變壓器絕緣損壞或被擊穿。主變吊芯與高壓管安裝時落入螺帽等雜物、密封裝置安裝有誤差等都會直接影響到主變絕緣強度的變化,極可能致使局部絕緣遭損毀或擊穿,釀成惡性事故。
2.4.5電流互感器因安裝檢修不慎,使一次繞組開路,將產生很高的過電壓,危及人身與設備安全。
3 機電設備安裝常見問題的對策
3.1嚴格施工組織設計及設備、設施選擇施工組織設計和設備、設施選擇是經有關科技人員共同研究商定的,通過技術計算和驗算,既有其使用價值,又可保證良好的經濟效益,不要隨便更改選用設備,否則會影響基礎工作的進展。
3.2按預定計劃開展安裝工作
每一項機電設備安裝工作順序都有其科學性。一個安裝工程的計劃排隊是經過多方面的考慮,經過技術論證排出的,是有科學根據并有一定指導性的,不要隨便改動,以免造成窩工,工程進度連續不上。
3.3對安裝工作要總體布置、統一安排對大型安裝工程,由于設備多,安裝環節多,因此對每項安裝都必須有總體布置,做到統一安排,施工隊中必須有一個統一指揮的機電隊長(或項目副經理)對各項工作進行協調處理,集思廣益,多征求職工的工作意見。
3.4安裝工作要有主有次一個工程具備開工條件,首先得有電源,其次要有動力源,有提升裝備(包括井架、提升絞車)。要想達到短期開工之目的,安裝工作必須有主有次,分輕重緩急。只有對安裝變電所、壓風機,井架、提升絞車工作有一個合理的安排,有計劃有目的地進行安裝工作,才能達到事半功倍之效果。
3.5嚴格按設計要求施工每一種設備的安裝,都有很嚴格的技術要求,只有按設計技術要求施工,才能減少不必要的時間流失和材料消耗。
3.6按常規安裝方式對設備進行安裝每種設備的安裝,都有一定的作業方式和工作順序,不能急于求成,工序顛倒。例如:井架安裝,常規作業方法是一層組裝起后,進行初操平找正,然后逐層安裝。
4 調試階段
4.1調試過程。大型機電設備在出廠時一般無法進行總裝和負荷試驗,即使是使用過的設備,由于拆卸、搬運及再次安裝,難免改變原始安裝狀態,所以,對安裝好的大型機電設備盡快進行調試就顯得非常重要。應該認識到,不僅是解體裝運的初次使用的大型筑路設備在安裝后需進行調試,實際上所有新增、更新、自制、改造、大(中)修機械設備,在投入使用前,都必須進行調試。調試前,要再次檢查設備裝配的完整性、合理性、安全性和滲漏痕跡等,以便調試工作安全、順利進行。調試時,主要試驗其工作質量、操作性能、可靠性能、經濟性能等。考核時,應在施工現場進行空負荷和負荷試驗,以正確檢驗其性能是否達到工業化生產技術條件要求。調試過程中,參加調試的機械技術人員和隨機操作人員須時時到位,以主動了解設備的現實技術狀況、調試程序、操作控制方法等。現場必須有機械技術人員筆錄調試過程。因為它是原始記錄,是日后操作設備、撰寫技術報告、解決遺留問題的重要依據。
4.2撰寫安裝調試技術報告。撰寫安裝調試技術報告是大型筑路設備初次安裝調試后進行技術、資產及財務驗收的主要依據之一,是一項必須做好的工作。安裝調試報告應以讀者能再現其安裝、調試過程,并得出與文中相符的結果為準。大型機電設備安裝調試技術報告作為一種科技文件,其內容比較專深、具體,有關人員應意識到它的重要性。撰寫時注意與論文的區別,應詳略得當、主次分明,不要象流水帳一樣,把某年某月做了些什么調試統統寫入報告,使人不得要領。在安裝調試技術報告的結尾,要向曾給安裝調試工作以幫助、支持或指導的人及部門致以謝意。這種做法,實際上也是載明安裝、調試過程中有關部門及人員所起作用、工作內容或成績的一種方式。
5 機電設備調試
機電設備安裝好之后,后續工作就是盡快地使設備投入生產。要實現這一目標,調試是必不可免的過程。充分細致的設備裝配檢查是設備調試工作順利完成的基礎與前提,調試前需要再次對設備裝配的完整性、安全性以及安裝條件等作好檢查工作。設備調試的內容主要包括:設備使用性能、工作質量以及運行是否正常等。調試過程中,相應機械技術人員與輔助人員須按時足員到位,在調試過程中進一步熟悉設備的操作要領、基本程序以及各項功能控制方法。調試過程應有專門人員筆錄設備調試的各項步驟,通過對設備安裝經驗的系統總結,可比較客觀的歸納出設備的基本運行狀態及特征。也可以為將來設備運行中可能出現的各種技術問題解決提供一手資料,對于設備的升級改造也能起到積極的輔助作用。
在設備的調試過程中,必須遵循兩項基本原則:其一,“五先五后”原則,即先單機后聯調;先就地后遙控;先點動后聯動;先空載后負載;先手動后自動。其二,“安全第一”為基本準則。人身安全與設備安全必須放在第一位考慮,不能急于投產或輕忽大意而淡化安全調試的重要性。
6 設備技術驗收階段
大型機電設備安裝調試成功的標志是:設備安裝調試完成,生產考核合格,經濟和技術性能符合定貨合同規定指標,具備工業化生產條件。大型機電設備安裝調試結束之后,要進行技術驗收和總結。經過對安裝調試技術報告、設備有關文件、單證、資料的審查及現場的考察,才可決定能否通過技術驗收。通過技術驗收后,才準予辦理資產、財務手續,交付使用。未經技術驗收,不得入帳和投入使用,否則會造成責任不清。驗收合格后,由總監理工程師簽署工程竣工報驗單,并向建設單位提出資料評估報告。對一些竣工驗收后工程移交前未來得及完成整改的問題,可征得安裝單位的同意,做甩項處理,在監理的督促和跟蹤下可以在工程移交后繼續完善。
【關鍵詞】阻隔;包裝;環保;復合
引言
近年來,高阻隔膜材料因阻隔性能優異,且成本低廉、使用方便、透明度好、印刷適應性強、機械性能好等優點,在市場上廣泛應用于食品、藥品、化學品等產品包裝,電子器件封裝及燃料電池隔膜等領域,并飛速發展。
優異的阻隔性是高阻隔膜材料的重要特性,包含良好的阻氣性、阻濕性、阻油性、保香性等。早期的阻隔膜材料以乙烯-乙烯醇共聚物(EVOH),聚酰胺(PA),聚偏二氯乙烯(PVDC),聚乙烯醇(PVA)等薄膜為代表。隨著食品飲料、醫療、化學品等領域產品強勁的需求推動,對包裝阻隔性的要求也越來越嚴格,現已開發出多種性能優異的高阻隔膜材料,包含多層聚合物復合膜,真空蒸鍍復合膜,聚合物/層狀納米復合膜等,本文就各種高阻隔膜材料的阻隔性能、生產技術和應用發展等進行總結和分享。
1.多層聚合物復合膜
由于各種聚合物在性能方面各有其優勢和弱點,單一聚合物膜材料很難滿足眾多產品對多功能性的要求,因此利用多層薄膜復合技術,將兩種及以上的單一聚合物薄膜進行復合形成多層聚合物復合膜,使各種聚合物性能優勢互補,不僅能提高膜材料的阻隔性能,還可改善熱封性、耐熱性、機械性能、抗紫外線性能等其他性能。目前研究發展的多層膜復合技術主要有共擠出復合、涂布復合、自組裝復合等。
1.1共擠出復合膜
共擠出復合膜是利用多臺擠出機對各聚合物進行加熱熔融,通過一個多流道復合機頭共擠出生產的多層復合薄膜。共擠出復合技術主要用于具有相容性的熱塑性聚合物復合,不使用溶劑,環境污染小,生產工序少,生產成本低,在薄膜生產企業中得到廣泛應用。
目前共擠出復合膜材料取得新的研究進展,汪若冰等[1]以聚乙烯(PE)、聚丙烯(PP)、尼龍6(PA)、乙烯-乙烯醇共聚物(EVOH)四種聚合物作為原料進行熔融共擠,制備五層復合膜材料,其中EVOH和PA6為復合膜的阻隔層,PE為復合膜的熱封層。五層共擠復合膜具備高阻隔性和良好的力學性能,是理想的高阻隔包裝材料。梁曉紅等[2]將EVOH與PE、PA共混改性,制備PE/PA/EVOH/PA強韌性高阻隔復合膜,綜合性能優異,具有良好的應用前景。
1.2涂布復合膜
涂布復合膜是將阻隔性聚合物溶解在溶劑中形成涂布液,利用涂布設備將涂布液涂布于基膜表面,干燥熟化后形成的多層復合膜。涂布復合技術可用于難以單獨加工成膜的聚合物,如PVDC, PVA等,工藝簡單,生產成本低,阻隔性能好,但可能有有機溶劑殘留,造成環境污染。
目前涂布復合膜研究取得了很多新進展,桑利軍等[3]在PP、PE、CPP(流延聚丙烯)、PET(聚酯)薄膜上涂布2-4um PVDC的復合薄膜,其透氣性和透濕性顯著降低,應用于制造藥品復合包裝袋。舒心等[4]以雙向拉伸PP、雙向拉伸PET、雙向拉伸PA或PE等薄膜作為基膜,經電暈處理后,將改性丙烯酸酯類聚合物BARILAYER高阻隔涂布液涂布于基膜電暈面,經5-6小時的室內40-50℃完全干燥熟化后,在涂層面印刷,再復合一層聚烯烴薄膜,最后得到新型高阻氧性塑料軟包裝薄膜,產品原料易得,價格低廉,阻隔性優于PVDC,且不受相對濕度影響,BARILAYER可降解,燃燒僅產生CO2和H2O,具有環保創新性。
1.3逐層自組裝(Layer-by-Layer)復合膜
逐層自組裝復合膜是特定聚合物、量子點、納米粒子、生物分子等,在互補性相互作用下(靜電相互作用、氫鍵結合,配位鍵和、共價結合等)交替沉積形成的多層復合膜。通過改變沉積周期、PH、溫度、分子量、離子強度等條件,獲得性能優異的復合膜材料,廣泛應用于阻燃、抗菌、氣體阻隔等。
當前逐層自組裝復合膜也取得了新的研究進展,Fangming Xiang等[5]將聚丙烯酸(PAA)和聚環氧乙烷(PEO)通過氫鍵結合作用,逐層自組裝制備韌性氣體阻隔復合膜,當調整PH為3時, PAA/PEO雙分子層自組裝20層形成高阻隔復合膜,涂覆于1.58mm厚天然橡膠片上,使得天然橡膠片的氧氣透過率降低89.6%,阻氧性優異,且氫鍵結合強度弱于離子鍵合,制得的高阻隔復合膜具有一定韌性,適合高應變應用。Chungyeon Cho等[6]將聚醚酰亞胺PEI,PAA,PEO進行逐層自組裝沉積,通過PEI/PAA離子鍵合作用和PAA/PEO氫鍵結合作用,形成PEI/PAA/PEO/PAA復合膜,當調整PH為3,PEI/PAA/PEO/PAA四分子層自組裝20層形成高阻隔韌性復合膜,涂覆于1mm厚聚氨酯橡膠片,使得聚氨酯橡膠片的氧氣透過率降低93.3%,適用于輪胎等充氣用品的氣體阻隔。
1.4其他復合膜
除上述多層膜復合技術外,研究還采用逐層澆鑄復合、化學接枝復合、共混擠出復合等創新方法,制備阻隔性能優異的多層聚合物復合膜。
董同力嘎等[7]采用逐層澆鑄法制備三層可降解左旋聚乳酸PLLA/聚乙烯醇PVA/左旋聚乳酸PLLA復合膜,其中中間層PVA為阻隔層,兩側疏水性的PLLA為保護層。PVA阻隔層顯著提高了PLLA的阻隔性,當PVA含量占復合膜比重20%時,阻氧性較PLLA單膜提高了272倍,同時力學性能也有所提升。PLLA/PVA/PLLA復合膜實際應用性更強,且完全符合環境友好型復合膜的開發趨勢。
Yuehan Wu等[8]將殼聚糖CS接枝到氧化纖維素OC基體上,化學接枝過程改變了基體微觀結構,OC/CS復合膜兼具兩種聚合物的性能優勢,具有優異的阻水阻氧性、抗菌性、高透明性和良好的機械性能,是安全、可生物降解、性能優異的包裝材料。
呼和等[9,10]將EVOH與PA6進行共混擠出后制備丙烯酸乙基己酯EHA薄膜,再與PE膜復合,得到EHA/PE復合膜,研究證明,EHA薄膜阻氧性能很高,EHA/PE復合膜的阻水阻氧性能優于PA膜、EVOH膜和PA6/PE復合膜,適用于冷藏保鮮包裝。
2.真空蒸鍍復合膜
利用真空鍍膜工藝將金屬(如鋁Al)或者無機氧化物(如氧化硅SiO2,氧化鋁Al2O3,氧化鈦TiO2)蒸鍍在塑料膜表面,制備真空鍍鋁膜或真空蒸鍍陶瓷膜,阻隔性能優異、生產效率高、成本低廉、使用方便,廣泛應用于食品包裝,甚至電子產品封裝領域。陶瓷膜透光率高且綠色環保,是目前高阻隔膜研究熱點。
齊小晶等[11]利用等離子體增強化學氣相沉積法在聚己內酯(PCL)膜基材表面蒸鍍SiOx層,可以提高薄膜的阻隔性能,且不受溫度濕度影響,同時符合開發環境友好型材料的需求。
趙子龍等[12]經等離子化學氣相沉積法在PLLA薄膜表面上沉積SiOx層,并利用溶液涂布法在SiOx層上涂覆PVA層,制備新型PLLA/SiOx/PVA復合膜,其阻隔性能與PA/PE復合膜相似,柔韌性也得到改善,加上可生物降解的環保優勢,可替代PA/PE復合膜應用于食品包裝領域,前景十分可觀。
朱琳等[13]采用射頻磁控共濺射的方法在PP基底膜表面蒸鍍TiNx/CFy薄膜,TiNx的體積分數為0.28時,復合薄膜的阻隔性能和柔韌性能最好,解決了傳統陶瓷膜的裂紋問題。
3.聚合物/層狀無機物納米復合膜
聚合物/層狀無機物納米復合膜是將能形成納米尺寸結構微區的層狀無機填料分散到聚合物中,形成納米復合膜。填料的納米片層結構可以阻擋氣體滲入,提高材料氣密性,顯著改善聚合物的阻透性能。目前層狀納米填料如蒙脫土(MMT)、層狀雙氫氧化物(LDHs)和石墨烯(GNSs)以其獨特結構和優異性能,成為備受關注的研究前沿和熱點。
Ray Cook等[14]利用熵增原理制備自組裝高度有序有機/無機納米復合膜,使用噴墨打印機,將0.1-0.2%體積分數的聚乙烯吡咯烷酮(PVP)水溶液打印為聚合物膜層,將0.2wt%體積分數的MMT分散液打印為納米層,聚合物層和納米層通過離子鍵合自組裝為PVP/MMT雙分子膜層,當在PET基體上打印5層PVP/MMT雙分子膜層后,阻氧性能優于高阻隔性金屬PET,且具有高透明性,又安全環保,在食品包裝領域具有廣闊應用前景。
張思維等[15]以氧化解壓多壁碳納米管的方法,制備氧化石墨烯納米帶(GONRs),然后用異氟爾酮二異氰酸酯(IPDI)對GONRs進行化學修飾制得功能氧化石墨烯納米帶(IP-GONRs)。采用溶液成形的方法在涂膜機上制備功能氧化石墨烯納米帶(IP-GONRs)/熱塑性聚氨酯(TPU)復合薄膜。當IP-GONRs含量為3.0wt%,TPU氧氣透過率降低67%,阻隔性能明顯提高,在食品包裝和輕量氣體存儲器領域存在潛在應用。
豆義波等[16]采用簡易抽濾成膜法,制備柔性透明聚乙烯醇(PVA)/水滑石(LDH)復合自支撐薄膜,該復合膜良好的二維有序結構有效抑制了氧氣擴散,提升了薄膜阻氧性能,在阻隔性要求極高的電子器件封裝及原料電池隔膜等領域有較好的前景。
總結
當前,在食品、藥品、化學品產品的強勁市場需求推動下,包裝膜材料持續快速發展,產品對膜材料的要求更高,要求開發高阻隔性、保鮮性、耐熱性、抗菌性等多功能性膜材料,其中高阻隔膜材料發展迅速。同時隨著資源越來越緊缺和人們環保意識增強,開發環境友好高阻隔膜材料也成為熱點。未來幾年,我們應當繼續將高阻隔膜材料作為研究開發重點,縮短與國外高阻隔膜技術差距,滿足日益增長的市場發展需求。
參考文獻
[1]汪若冰,馮乙巳.五層共擠阻隔薄膜的結構、性能、工藝及表征[J].安徽化工,2015, 41(6): 31-35.
[2]梁曉紅,呼和,王羽,等.乙烯-乙烯醇共聚物復合膜的力學、熱學及阻隔性能研究[J].塑料科技,2015, 43(6): 21-24.
[3]桑利軍,王敏,陳強,等.聚乙烯薄膜表面沉積納米SiOx涂層的阻隔性能[J].中國表面工程, 2015, 28(3): 36-41.
[4]舒心,周海平.新型高阻氧性包裝薄膜[J].塑料包裝,2015, 25(6): 22-25.
[5]Fangming Xiang, Sarah M Ward, Tara M Givens, et al. Super Stretchy Polymer Multilayer Thin Film with High Gas Barrier[J]. Macro Letters, 2014, 3: 1055-1058.
[6]Chungyeon Cho, Fangming Xiang, Kevin L. et al. Grunlan. Combined Ionic and Hydrogen Bonding in Polymer Multilayer Thin Film for High Gas Barrier and Stretchiness[J]. Macromolecules, 2015, 48: 5723-5729.
[7]董同力嘎,王爽爽,孫文秀,等.多層復合聚乳酸薄膜的阻隔性和力學性能[J].高分子材料科學與工程, 2015, 31(8): 177-181.
[8]Yuehan Wu, Xiaogang Luo, Wei Li, et al. Green and biodegradable composite ?lms with novel antimicrobial performance based on cellulose[J]. Food Chemistry, 2016, 197: 250-256.
[9]呼和,梁曉紅,王羽,等. EHA/PE薄膜的阻隔性及其在冷鮮肉包裝中的應用[J].塑料工業, 2015, 43(6): 66-69.
[10]王羽,云雪艷,張曉燕,等. EHA/PE高阻隔復合膜對鮮切萵筍保鮮效果的影響[J]. 食品工業科技, 2015, 36(22): 308-312.
[11]齊小晶,宋樹鑫,梁敏,等. PCL/SiOx復合膜的熱學、力學及阻隔性能[J].塑料工業, 2015, 43(9): 113-116.
[12]趙子龍,王羽,,云雪艷,等.高阻隔性PLLA薄膜的制備及其對冷鮮肉保鮮效果的研究[J].食品科技, 2015, 40(11): 89-95.
[13]朱琳,王金武,劉壯,等. PP基材表面磁控共濺射制備新型阻隔薄膜的研究[J]. 包裝工程, 2015, 36(9): 73-76.
[14]Ray Cook, Yihong Chen, Gary W Beall. Highly Ordered Self-Assembling Polymer/Clay Nanocomposite Barrier Film[J]. Applied Materials & Interfaces, 2015, 7: 10915-10919.
[15]張思維,趙文譽,李長,等.功能氧化石墨烯納米帶/熱塑性聚氨酯復合材料薄膜的制備及阻隔性能[J].高分子材料科學與工程, 2016, 32(1): 151-157.
[16]豆義波,潘婷,劉曉西,等.聚乙烯醇/水滑石復合薄膜的制備及其氧氣阻隔性能研究[C].中國化學會第九屆全國無機化學學術會議論文集――D無機材料化學, 2015.
關鍵詞:波峰焊; 印制線路板; 助焊劑; 焊料; 工藝參數
Study on Process of Wave Soldering
XIANFei
(Fiberhome Telecommunication Co., Ltd, Wuhan 430074,China)
Abstract: Although wave soldering is a conventional soldering technology, now it still plays a important role in electronics production. The article introduces theory of wave soldering, at the same time an advanced soldering technology is also mentioned, it allowed through-hole components to be soldered, and protected the SMT components from the wave, unlike in the case of wave soldering. At last the effective way for improving the quality of wave soldering was discussed in terms of the quality control before soldering and the control of manufacturing material and process parameters.
Keywrds: Wave Soldering; Printed Circuit Board; Soldering Flux; Solder; Process Parameters
波峰焊是將熔化的焊料,經電動泵或電磁泵噴流成設計要求的焊料波峰,使預先裝有電子元器件的線路板通過焊料波峰,實現元器件焊端或引腳與線路板焊盤之間機械與電氣連接的軟釬焊。波峰焊用于線路板裝聯已有20多年的歷史,現在已成為一種非常成熟的電子裝聯工藝技術,目前主要用于通孔插裝組件和采用混合組裝方式的表面組件的焊接。
1波峰焊工藝技術介紹
波峰焊有單波峰焊和雙波峰焊之分。單波峰焊用于SMT時,由于焊料的“遮蔽效應”容易出現較嚴重的質量問題,如漏焊、橋接和焊縫不充實等缺陷。而雙波峰則較好地克服了這個問題,大大減少漏焊、橋接和焊縫不充實等缺陷,因此目前在表面組裝中廣泛采用雙波峰焊工藝和設備。
雙波峰焊的結構組成見圖1。
波峰錫過程:治具安裝噴涂助焊劑系統預熱一次波峰二次波峰冷卻。下面分別介紹各步內容及作用。
1.1 治具安裝
治具安裝是指給待焊接的線路板安裝夾持的治具,可以限制基板受熱形變的程度,防止冒錫現象的發生,從而確保浸錫效果的穩定。
1.2 助焊劑系統
助焊劑系統是保證焊接質量的第一個環節,其主要作用是均勻地涂覆助焊劑,除去線路板和元器件焊接表面的氧化層和防止焊接過程中再氧化。助焊劑的涂覆一定要均勻,盡量不產生堆積,否則將導致焊接短路或開路。
助焊劑系統有多種,包括噴霧式、噴流式和發泡式。目前一般使用噴霧式助焊系統,采用免清洗助焊劑,這是因為免清洗助焊劑中固體含量極少,不揮發物含量只有1/5~1/20。所以必須采用噴霧式助焊系統涂覆助焊劑,同時在焊接系統中加防氧化系統,保證在線路板上得到一層均勻細密很薄的助焊劑涂層,這樣才不會因第一個波的擦洗作用和助焊劑的揮發,造成助焊劑量不足,而導致焊料橋接和拉尖。
噴霧式有兩種方式:一是采用超聲波擊打助焊劑,使其顆粒變小,再噴涂到線路板上。二是采用微細噴嘴在一定空氣壓力下噴霧助焊劑。這種噴涂均勻、粒度小,易于控制,噴霧高度/寬度可自動調節,是今后發展的主流。
1.3預熱系統
1.3.1預熱系統的作用
1)助焊劑中的溶劑成份在通過預熱器時,將會受熱揮發。從而避免溶劑成份在經過液面時高溫氣化造成炸裂的現象發生,最終防止產生錫粒的品質隱患。
2)待浸錫產品搭載的部品在通過預熱器時的緩慢升溫,可避免過波峰時因驟熱產生的物理作用造成部品損傷的情形發生。
3)預熱后的部品或端子在經過波峰時不會因自身溫度較低的因素大幅度降低焊點的焊接溫度,從而確保焊接在規定的時間內達到溫度要求。
1.3.2預熱方法
波峰焊機中常見的預熱方法有三種:空氣對流加熱、紅外加熱器加熱以及熱空氣和輻射相結合的方法加熱。
1.3.3預熱溫度
一般預熱溫度為130~150℃,預熱時間為1~3min。預熱溫度控制得好,可防止虛焊、拉尖和橋接,減小焊料波峰對基板的熱沖擊,有效地解決焊接過程中線路板翹曲、分層、變形問題。
1.4焊接系統
焊接系統一般采用雙波峰。在波峰焊接時,線路板先接觸第一個波峰,然后接觸第二個波峰。第一個波峰是由窄噴嘴噴流出的“湍流”波峰,流速快,對組件有較高的垂直壓力,使焊料對尺寸小、貼裝密度高的表面組裝元器件的焊端有較好的滲透性;通過湍流的熔融焊料在所有方向擦洗組件表面,從而提高了焊料的潤濕性,并克服了由于元器件的復雜形狀和取向帶來的問題;同時也克服了焊料的“遮蔽效應”湍流波向上的噴射力足以使焊劑氣體排出。因此,即使線路板上不設置排氣孔也不存在焊劑氣體的影響,從而大大減少了漏焊、橋接和焊縫不充實等焊接缺陷,提高了焊接可靠性。經過第一個波峰的產品,因浸錫時間短以及部品自身的散熱等因素,浸錫后存在著很多的短路、錫多、焊點光潔度不正常以及焊接強度不足等不良內容。因此,緊接著必須進行浸錫不良的修正,這個動作由噴流面較平較寬闊、波峰較穩定的二級噴流進行。這是一個“平滑”的波峰,流動速度慢,有利于形成充實的焊縫,同時也可有效地去除焊端上過量的焊料,并使所有焊接面上焊料潤濕良好,修正了焊接面,消除了可能的拉尖和橋接,獲得充實無缺陷的焊縫,最終確保了組件焊接的可靠性。雙波峰基本原理如圖3。
1.5冷卻
浸錫后適當的冷卻有助于增強焊點接合強度,同時,冷卻后的產品更利于爐后操作人員的作業。因此,浸錫后產品需進行冷卻處理。
2使用屏蔽模具波峰焊接工藝技術
由于傳統波峰焊接技術無法應對焊接面細間距、高密度貼片元件的焊接,因此一種新方法應運而生:使用屏蔽模具(如圖4)遮蔽貼片元件來實現對線路板焊接面插裝引線的波峰焊接。
2.1使用屏蔽模具波峰焊接技術的優點
1)實現雙面混裝PCB波峰焊生產,能大幅提高雙面混裝PCB生產效率,避免手工焊接存在的質量一致性差的問題。
2)減少粘貼阻焊膠的準備時間,提高生產效率,降低生產成本。
3)產量相當于傳統波峰焊。
2.2屏蔽模具材料
1)制作模具必須防靜電,常見材料為:鋁合金,合成石(國產/進口),纖維板。使用合成石時為避免波峰焊傳感器不感應,建議不要使用黑色合成石。
2)制作模具基材厚度。根據機盤反面元件的厚度,選取5~8mm厚度的基材制作模具。
2.3模具工藝尺寸要求
1)模具的外形尺寸:模具的長與寬分別等于PCB的長與寬加上60mm的載具邊的寬度且模具寬度必須350mm,具體工藝尺寸如圖5。當PCB寬度小于140mm時,可以考慮在一模具同時放置兩塊PCB焊接。
2)工藝邊離邊緣8mm,另外兩邊貼近邊緣地方加裝10mm寬、10mm高的電木條,以增加模具的強度,減少模具變形。
3)每個加強檔條上必須使用螺絲固定,螺絲與螺絲的間隔必需在150mm以下。
4)在模具制作完成后,需在四周且間距100mm以內安裝壓扣 (固定PCB于模具上),且須注意以下幾點:(1)旋轉一周不碰觸到零件;(2)不影響DIP插件;(3)能將PCB穩固于模具。
5)模具的四個角要開一個R5的倒角。
6)模具上的PCBA在過錫爐時,有些零件受錫波的沖擊會產生浮高,因此對一些容易浮高的零件采用壓件的方法來解決。目前主要采用的方式:(1)金屬鐵塊壓件;(2)模具上安裝壓扣壓件;(3)制作防浮高壓件治具。
3提高波峰焊接質量的方法和措施
分別從焊接前的質量控制、生產工藝材料及工藝參數這三個方面探討了提高波峰焊質量的有 效方法。
3.1 焊接前對線路板質量及元件的控制
3.1.1焊盤設計
1)在設計插件元件焊盤時,焊盤大小尺寸設計應合適。焊盤太大,焊料鋪展面積較大,形成的焊點不飽滿,而較小的焊盤銅箔表面張力太小,形成的焊點為不浸潤焊點。孔徑與元件引線的配合間隙太大,容易虛焊,當孔徑比引線寬0.05~0.2mm,焊盤直徑為孔徑的2~2.5倍時,是焊接比較理想的條件。
2)在設計貼片元件焊盤時,應考慮以下幾點:
(1)為了盡量去除“陰影效應”,SMD的焊端或引腳應正對著錫流的方向,以利于與錫流的接觸,減少虛焊和漏焊。波峰焊時推薦采用的元件布置方向圖如圖6所示。
(2)波峰焊接不適合于細間距QFP、PLCC、BGA和小間距SOP器件焊接,也就是說在要波峰焊接的這一面盡量不要布置這類元件。
(3)較小的元件不應排在較大元件后,以免較大元件妨礙錫流與較小元件的焊盤接觸,造成漏焊。
(4)當采用波峰焊接SOIC等多腳元件時,應于錫流方向最后兩個(每邊各1)焊腳處設置竊錫焊盤,防止連焊。
(5)類型相似的元件應該以相同的方向排列在板上,使得元件的安裝、檢查和焊接更容易。例如使所有徑向電容的負極朝向板件的右面,使所有雙列直插封裝(DIP)的缺口標記面向同一方向等等,這樣可以加快插裝的速度并更易于發現錯誤。如圖7所示,由于A板采用了這種方法,所以能很容易地找到反向電容器,而B板查找則需要用較多時間。實際上一個公司可以對其制造的所有線路板元件方向進行標準化處理,某些板子的布局可能不一定允許這樣做,但這應該是一個努力的方向。
3.1.2PCB平整度控制
波峰焊接對線路板的平整度要求很高,一般要求翹曲度要小于0.5mm,如果大于0.5mm要做平整處理。尤其是某些線路板厚度只有1.5mm左右,其翹曲度要求就更高,否則無法保證焊接質量。
3.1.3妥善保存線路板及元件,盡量縮短儲存周期
在焊接中,無塵埃、油脂、氧化物的銅箔及元件引線有利于形成合格的焊點,因此線路板及元件應保存在干燥、清潔的環境中,并且盡量縮短儲存周期。對于放置時間較長的線路板,其表面一般要做清潔處理,這樣可提高可焊性,減少虛焊和橋接,對表面有一定程度氧化的元件引腳,應先除去其表面氧化層。
3.2生產工藝材料的質量控制
在波峰焊接中,使用的生產工藝材料有:助焊劑和焊料,分別討論如下:
3.2.1助焊劑質量控制
助焊劑在焊接質量的控制上舉足輕重,其作用是:
1)除去焊接表面的氧化物;
2)防止焊接時焊料和焊接表面再氧化;
3)降低焊料的表面張力;
4)有助于熱量傳遞到焊接區。目前,波峰焊接所采用的多為免清洗助焊劑。
選擇助焊劑時有以下要求:
1)熔點比焊料低;
2)浸潤擴散速度比熔化焊料快;
3)粘度和比重比焊料小;
4)在常溫下貯存穩定。
3.2.2焊料的質量控制
錫鉛焊料在高溫下(250℃)不斷氧化,使錫鍋中錫-鉛焊料含錫量不斷下降,偏離共晶點,導致流動性差,出現連焊、虛焊、焊點強度不夠等質量問題。可采用以下幾個方法來解決這個問題:
1) 添加氧化還原劑,使已氧化的SnO還原為Sn,減小錫渣的產生;
2) 不斷除去浮渣;
3) 每次焊接前添加一定量的錫;
4) 采用含抗氧化磷的焊料;
5) 采用氮氣保護,讓氮氣把焊料與空氣隔絕開來,取代普通氣體,這樣就避免了浮渣的產生。這種方法要求對設備改型,并提供氮氣。
目前最好的方法是在氮氣保護的氛圍下使用含磷的焊料,可將浮渣率控制在最低程度,焊接缺陷最少、工藝控制最佳。
3.3焊接過程中的工藝參數控制
焊接工藝參數對焊接表面質量的影響比較復雜,并涉及到較多的技術范圍。
3.3.1預熱溫度的控制
預熱的作用:
1)使助焊劑中的溶劑充分發揮,以免線路板通過焊錫時,影響線路板的潤濕和焊點的形成;
2)使線路板在焊接前達到一定溫度,以免受到熱沖擊產生翹曲變形。一般預熱溫度控制在180~210℃,預熱時間1~3分鐘。
3.3.2焊接軌道傾角
軌道傾角對焊接效果的影響較為明顯,特別是在焊接高密度SMT器件時更是如此。當傾角太小時,較易出現橋接,特別是焊接中,SMT器件的“遮蔽區”更易出現橋接;而傾角過大,雖然有利于橋接的消除,但焊點吃錫量太小,容易產生虛焊。軌道傾角應控制在5°~8°之間。
3.3.3波峰高度
波峰的高度會因焊接工作時間的推移而有一些變化,應在焊接過程中進行適當的修正,以保證在理想波峰高度進行焊接,以壓錫深度為PCB厚度的1/2~1/3為準。
3.3.4焊接溫度
焊接溫度是影響焊接質量的一個重要的工藝參數。焊接溫度過低時,焊料的擴展率、潤濕性能變差,使焊盤或元器件焊端由于不能充分的潤濕,從而產生虛焊、拉尖、橋接等缺陷;焊接溫度過高時,則加速了焊盤、元器件引腳及焊料的氧化,易產生虛焊。焊接溫度應控制在250+5℃。
4常見焊接缺陷及排除方法
影響焊接質量的因素是很多的,表1列出的是一些常見缺陷及排除方法,以供參考。
波峰焊接是一項很精細的工作,影響焊接質量的因素也很多,還需要我們更深一步地研究,以期提高波峰焊的焊接質量。
參考文獻
[1]吳懿平,鮮飛.電子組裝技術[M].武漢:華中科技大學出版社,2006.
[2]張文典.實用表面組裝技術(第二版)[M].北京:電子工業出版社,2006.
[3]周德儉.表面組裝工藝技術[M].北京:電子工業出版社,2002.
[4]王德貴.迎接21世紀的表面組裝技術[J].電子工藝技術,1999(4):169-171.